Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Oxygen Storage Capacity (OSC) Measurement of 3-Way Automotive Catalysts Using the CATAGEN OMEGA Test Reactor

2021-09-05
2021-24-0083
A Three-way automotive catalyst's ability to store oxygen is still a crucial performance metric for modern day catalyst applications. With more stringent emissions legalisation, the oxygen storage capacity (OSC) within the catalyst can assist with converting different exhaust gases such as CO, THC and NOx under transient operating conditions. OSC is currently the only onboard catalyst performance metric recorded during a vehicle's useful life. Catalyst performance is correlated to this OSC measurement. Rhodium is a precious metal used in automotive catalysts to help with the conversion of NOx. The price of rhodium is increasing drastically, requiring original equipment manufacturers (OEMs) to look at cost-effective alternatives to maintain NOx conversion within the exhaust stream. OSC in the catalyst is possible due to ceria in the washcoat. Stored oxygen can help promote other reactions in the catalyst bed to help with the conversion of NOx.
Technical Paper

A Study of the Effect of Light-Off Temperatures and Light-Off Curve Shape on the Cumulative Emissions Performance of 3-Way Catalytic Converters

2021-04-06
2021-01-0594
The results of this paper will show the reader how to quantify a minimum light-off temperature to meet the required emissions standards with the use of a 3-way catalytic converter. The method can be applied to both motorcycle and larger automotive catalysts to help meet their respective emissions standards (Euro 5/Euro 7). The ability to predict a light-off temperature for any catalyst at the beginning of the project saves both time and resource. With an emphasis on how the shape of the light-off curve affects the cumulative tailpipe emissions and how shape of the light-off curves change with the ageing process. Changes in the light-off curves will be reviewed to understand how the chemical reactions and pore diffusion mechanisms within the catalyst deplete to negatively affect performance over its life time.
Technical Paper

Creation of OBD Limit Motorcycle Catalysts Using Different Ageing Methods

2021-04-06
2021-01-0598
This paper outlines a novel method employed to accurately age catalysts to the required OBD limit for European motorcycles legalisation Euro 5 using a combination of modelling and testing. The method applies several strategies, including thermal ageing and catalyst poisoning, to reduce catalyst activity in order to mirror real-world catalyst ageing. Predictions were made using a combined global and micro kinetic model to specify catalyst activity to a matching light-off condition. The model simulated a motorcycle operating on a WMTC (World Motorcycle Test Cycle) and adjusted catalyst activity (Precious metal and Oxygen Storage Capacity) until tailpipe emissions matched the limits for Euro 5 OBD II. The same model ran a simulated light-off test to predict the light-off point for the catalyst. The catalyst was then aged to match this light-off performance using a RAT ageing cycle with additional poisoning to reach the target deactivation.
Technical Paper

Modelling the Variation in Precious Metal Dispersion in a Three Way Catalytic Converter after Aging

2018-04-03
2018-01-0959
With emission legislations becoming ever more stringent, there is an increased pressure on after-treatment systems and more specifically three-way catalysts. With recent developments in emission legislations, there is a requirement for more complex after-treatment systems and understanding of the aging process. Whilst the body of understanding on catalyst deactivation and, in particular, catalyst aging is growing, there are still significant gaps in understanding, particularly how real world variations in temperature, flow rate and gas concentrations affect catalyst behavior. Under normal driving conditions, the catalyst can experience varying oxygen concentrations, such as under heavy acceleration or cruising down a hill will show a variation in oxygen from the engine emissions. The effect that varying oxygen concentrations has on the rate of aging is not fully understood and hence the total deactivation and conversion efficiencies are not known throughout the catalyst lifetime.
Technical Paper

Further Analysis of the Effect of Oxygen Concentration on the Thermal Aging of Automotive Catalysts

2017-09-04
2017-24-0136
With emission legislations becoming ever more stringent there is an increased pressure on the after-treatment systems, and more specifically the three-way catalysts. With recent developments in emission legislations, there is requirement for more complex after-treatment systems and understanding of the aging process. With future legislation introducing independent inspection of emissions at any time under real world driving conditions throughout a vehicle life cycle this is going to increase the focus on understanding catalyst behavior during any likely conditions throughout its lifetime and not just at the beginning and end. In recent years it has become a popular approach to use accelerated aging of the automotive catalysts for the development of new catalytic formulations and for homologation of new vehicle emissions.
Technical Paper

Analysis of the Effect of Oxygen Concentration on the Thermal Aging of Automotive Catalysts

2017-03-28
2017-01-0998
Accelerated aging of automotive catalysts has become a routine process for the development of new catalytic formulations and for homologation of vehicle emissions. In the standard approach, catalyst samples are subjected to temperatures in excess of 800°C on a predefined test cycle and aged for precise timescales representative of certain vehicle mileage. The high temperature feed gas is traditionally provided by a large gasoline engine but, increasingly, alternative bench-aging techniques are being applied as these offer more precise control and considerable cost savings, as well as offering more development possibilities. In the past few years, emissions control of light duty vehicles has become increasingly prominent as more stringent emissions legislations require more complex after-treatment systems. Aging of the catalysts are not fully understood as they are subjected to many varying environments, including temperature and gas concentrations.
Technical Paper

Sensitivity Analysis of Full Scale Catalyst Response under Dynamic Testing Conditions - A Method to Develop Further Understanding of Catalytic Converter Behavior Pt.1

2016-04-05
2016-01-0979
Catalyst aging is presently one of the most important aspects in aftertreatment development, with legislation stating that these systems must be able to meet the relevant emissions legislation up to a specified mileage on the vehicle, typically 150,000 miles. The current industry approach for controlling aging cycles is based solely on the detailed specification of lambda (air-fuel mixture concentration ratio), flow rate and temperature without any limitations on gas mixture. This is purely based upon the experience of engine-based aging and does not take into account any variation due to different engine operation. Although accurate for comparative testing on the same engine/engine type, inconsistencies can be observed across different aging methods, engine types and engine operators largely driven by the capability of the technology used.
Technical Paper

Advanced Ceramic Substrate with Ordered and Designed Micro-Structure for Applications in Automotive Catalysis

2014-10-13
2014-01-2805
This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure. This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.
Technical Paper

A Mathematical Approach to the Balancing of Mass Transfer and Reaction Kinetics in Dual Kinetic Model for Automotive Catalysis

2014-10-13
2014-01-2821
One of the most critical aspects in the development of a kinetic model for automotive applications is the method used to control the switch between limiting factors over the period of the chemical reaction, namely mass transfer and reaction kinetics. This balance becomes increasingly more critical with the automotive application with the gas composition and gas flow varying throughout the automotive cycles resulting in a large number of competing reactions, with a constantly changing space velocity. A methodology is presented that successfully switches the limitation between mass transfer and reaction kinetics. This method originally developed for the global kinetics model using the Langmuir Hinshelwood approach for kinetics is presented. The methodology presented is further expanded to the much more complex micro-kinetics approach taking into account various kinetic steps such as adsorption/desorption and surface reactions.
Technical Paper

Limitations of Global Kinetic Parameters for Automotive Application

2012-09-10
2012-01-1638
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modeling has become a popular alternative to experimental testing. Many kinetic models and kinetic parameters have appeared in literature in recent years, a comparison of these kinetic parameters for the global reaction of CO oxidation is presented.
X