Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Study of Parallel Turbocompounding for Small Displacement Engines

2013-04-08
2013-01-1637
In order to reduce greenhouse gases and respect stringent pollutant emission regulations, the modern engine is increasingly required to incorporate energy recovery systems to enhance performance and increase efficiency. This paper deals with the exhaust energy recovery through turbocompounding. Both series and parallel turbocompounds are discussed. In the first part of the document, literature on turbocompounding is introduced. Then a simulation study carried on AMESim software, using a 2L Diesel engine model is presented. The parallel turbocompounding is simulated by expanding a part of the exhaust gases in a converging nozzle instead of the turbocharger turbine. The power produced is evaluated as a function of the pressure drop in case a turbine is mounted instead of the nozzle. A global study over the entire engine map is described, and two steady state points 2000 rpm, 8 bar and 3500 rpm, 7 bar are chosen.
Technical Paper

Potential of Exhaust Heat Recovery by Turbocompounding

2012-09-10
2012-01-1603
Energy recovery of internal combustion engines has proved to be of primary interest to increase engine global efficiency. The motivation behind is to meet future fuel economy requirements and more stringent emissions regulations. Among all engine waste, research has shown that exhaust energy is the most promising solution due to its high availability. In this context, this paper deals with the analysis of the potential of exhaust heat recovery, especially by a turbocompound system. Turbo-compounding is already established in heavy-duty engines, in which an additional stage of expansion is made through an exhaust recovery turbine. This technique is now being studied for small displacement engines. In the first part of this document, a short history on turbocompounding is presented. Then we present a simulation study conducted on AMESim software, using a 0D 2L diesel engine model, calibrated to fit real engine test bench results.
X