Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

The Impact of Fuel Mass, Injection Pressure, Ambient Temperature, and Swirl Ratio on the Mixture Preparation of a Pilot Injection

2013-09-08
2013-24-0061
Fuel tracer-based planar laser-induced fluorescence is used to investigate the vaporization and mixing behavior of pilot injections for variations in pilot mass of 1-4 mg, and for two injection pressures, two near-TDC ambient temperatures, and two swirl ratios. The fluorescent tracer employed, 1-methylnaphthalene, permits a mixture of the diesel primary reference fuels, n-hexadecane and heptamethylnonane, to be used as the base fuel. With a near-TDC injection timing of −15°CA, pilot injection fuel is found to penetrate to the bowl rim wall for even the smallest injection quantity, where it rapidly forms fuel-lean mixture. With increased pilot mass, there is greater penetration and fuel-rich mixtures persist well beyond the expected pilot ignition delay period. Significant jet-to-jet variations in fuel distribution due to differences in the individual jet trajectories (included angle) are also observed.
Technical Paper

Quantitative DISI Spray Vapor Temperature Study for Different Biofuels by Two-Line Excitation Laser-Induced Fluorescence

2012-09-10
2012-01-1658
Biofuels and alternative fuels are increasingly being blended with conventional gasoline fuel to decrease overall CO₂ emissions. A promising way to achieve this is the use of DISI (direct-injection spark-ignition) technology. However, depending on temperature, pressure, chemical composition and the spark timing, unwanted pre-ignition may occur. Despite higher compression ratios, this engine knock can be decreased by lowering the mixing temperature. This results from the larger fuel evaporation enthalpy of certain biofuels which provides a non-homogeneous mixture throughout the combustion chamber. This work focuses on estimating the biofuel evaporation rate from absolute local vapor temperature and concentration. Measurements conducted in a high temperature/pressure cell using a multi-hole injector are carried out by applying planar, 2-line, laser-induced fluorescence and phase doppler interferometry.
X