Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparative Performance Analysis of SI Engine Fed by Ethanol and Methanol Reforming Products

2013-10-14
2013-01-2617
A comparative theoretical analysis of the spark ignition (SI) engine performance is performed for the cases of feeding it by the reforming products of two different alcohols: ethanol and methanol. Energy efficiency of the steam reforming process, optimal reactor temperature and obtainable compositions of the reforming products are showed and analyzed for the considered two fuel types. Three compositions of the reforming products: ethanol steam reforming (SRE), methanol steam reforming (SRM) and products of the low-temperature ethanol reforming are considered as gaseous fuels in the engine performance simulations. Change in the fuel burning velocity as a function of fuel composition and air excess factor is taken into account in a modeling of the heat release process.
Journal Article

Internal Combustion Engine Response to Presence of Combustion Inhibitors in Ambient Air

2013-04-08
2013-01-1513
Many motor vehicles (fire-fighting cars and trucks, helicopters, airplanes, etc.) are used for conflagration extinguishing purposes. It is clear that their engines aspirate air containing combustion inhibitors, which are used for flame suppression, but until now there is no available information about the influence of this fact on engine performance. This paper presents results of an experimental study on the influence of combustion inhibitors, such as Halon 1301 (CF₃Br) and CO₂, contained in the ambient air, on the performance of compression ignition (CI) and spark ignition (SI) engines. Substantial differences in the response of CI and SI engines to the inhibitor presence in the aspirated air are revealed. Starting from relatively small concentrations of CF₃Br, an increase of the CI engine speed and a simultaneous decrease of the brake specific fuel consumption are observed. The speed rise may attain up to 80% of its initial value.
Technical Paper

Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines

2012-10-23
2012-32-0098
At present the market of Wankel engines is limited to some special applications. This fact explains absence of commercial software products specially developed for this engine simulation and prediction of its performance. Conversely, there are available and widely used software products for simulation of reciprocating-piston engines performance. Some attempts are known in using this software for prediction of Wankel engine performance. This paper details an approach used in these attempts. Main differences between both types of engines are summarized and principles of a virtual reciprocating-piston engine compilation are developed. A method of virtual blowing was developed for assessment of discharge coefficients for intake and exhaust ports. Comparison of simulation results with the measured performance of two UAV Wankel engines showed sufficient accuracy of the suggested approach.
Journal Article

Mileage Influence on Conversion Efficiency of Catalytic Converter from In-Use Vehicles

2012-09-10
2012-01-1672
Although many works are published about the achieved advancements in the manufacturing of the catalytic converters (CC) system for vehicle engines and their testing under laboratory conditions, there is a lack in the published research about the mileages influence on their conversion efficiency (CE). Dependence of dual-brick CCs' CE in real-world driving conditions on vehicle mileage is studied for the first time. The CC tested are dismantled from the vehicles with mileage from 0 (new one) up to 150,000 km. The studied CC are evaluated at the engine test bench containing a dynamometer coupled with a spark ignition engine suitable for this type of CC system. Measurements of CC efficiency are performed at four different engine operation regimes: two loaded regimes and two non-load regimes - low and high speed idling. It is found that the oxidation of CO and HC at all four tested regimes took place almost totally in the first CC.
X