Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

A Downhill Brake Strategy Focusing on Temperature and Wear Loss Control of Brake Systems

2013-09-24
2013-01-2372
Aiming at achieving the economy and safety of downhill brake process (running downward along a long slope at a constant velocity) of commercial vehicles, an integrated control strategy of the main brake system and auxiliary brake systems is proposed. Based on Electronic Controlled Braking System (EBS), the strategy distributes braking force to each brake system and each axle according to the thermodynamic feature of them and the wear loss of each brake lining, in order to achieve economy at the premise of safety. A simulation is conducted based on MATLAB/Simulink and TruckSim. Simulation results show that the strategy proposed could control the temperature of each brake system at a rational value, and the balanced wear loss of brake linings is facilitated, thus, the safety and economy of downhill brake is ensured.
Technical Paper

The Regenerative Braking Control Strategy of Four-Wheel-Drive Electric Vehicle Based on Power Generation Efficiency of Motors

2013-04-08
2013-01-0412
Nowadays, the endurance mileage of electric vehicle is commonly short. For the purpose of enhancing the endurance mileage of 4WD electric vehicles, this paper proposes a new control strategy based on the generation efficiency of in-wheel motors. When the brake strength is low, the strategy defines the torque on which the motor has the highest generate efficiency as the upper limit of the braking torque of the front axle. What's more, the proportion of mechanical braking force is reduced. Because of these, the vehicle has a higher generation power. The simulation model is built up by using Matlab/Simulink and CarSim software, and the strategy is simulated under several driving cycles. The result shows that, comparing with the two traditional braking force distribution strategies, the new strategy can obviously improve the regenerative efficiency.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
X