Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Particulate Matter Formation Dynamics as Investigated by Ultra-Accelerated Quantum Chemical Molecular Dynamics Coupled with Canonical Monte Carlo Method

2016-04-05
2016-01-0553
Suppression or reduction of soot emissions is an important goal in the development of automotive engines for environmental and human health purposes. A better understanding at the molecular level of the formation process of soot particles resulting from collision and aggregation of smaller particles made of Polycyclic Aromatic Hydrocarbon (PAH) is needed. In addition to experiments, computational methods are efficient and valuable tools for this purpose. As a first step in our detailed computational chemistry study, we applied Ultra-Accelerated Molecular Dynamics (UAQCMD) and Canonical Monte-Carlo (CMC) methods to investigate the nucleation process. The UA-QCMD can calculate chemical reaction dynamics 107 times faster than conventional first principle molecular dynamics methods, while CMC can calculate equilibrium properties at various temperatures, pressures, and chemical compositions.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-04-16
2012-01-1292
Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
X