Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Comparison of Gaseous Emissions for B100 and Diesel Fuels for Real World Urban and Extra Urban Driving

2012-09-10
2012-01-1674
A Euro 3 1.8-liter diesel vehicle with an oxidation catalyst was used to investigate real-world exhaust emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. Diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME. A multifunctional additive package was added at 800 ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer, which can measure 52 species at a rate of 0.5 Hz. A Horiba on board emissions measuring system was also used (OBS 1300), which measures the exhaust mass flow rate together with air/fuel ratio.
Technical Paper

Rape Seed Oil B100 Diesel Engine Particulate Emissions: The Influence of Intake Oxygen on Particle Size Distribution

2012-04-16
2012-01-0435
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
X