Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Understanding MTF Additive Effects on Synchroniser Friction - Part 2, Structure Performance Analysis

2012-09-10
2012-01-1668
Specific frictional properties are essential to provide correct and pleasurable shifting in a manual transmission. Synchroniser rings are being manufactured from an increasingly wider range of materials, and it is important to understand synchroniser-additive interactions in order to develop tailored lubricants that provide the desired frictional performance. This paper describes a study of the interaction of various friction modifier additives with a range of synchroniser materials in order to better understand the potential to develop lubricants that provide optimal frictional performance across a wide range of manual transmission-synchroniser systems.
Technical Paper

Anatomy of an L-37 Hypoid Gear Durability Test Ridging Failure

2012-09-10
2012-01-1669
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability.
X