Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Study of the Effect of Injection Strategy and Compression Ratio on Gasoline/Diesel Fueled RCCI Engine

2018-10-30
2018-32-0017
RCCI engine is proven to have better combustion control and to produce very low NOx and soot emissions. However, its operations is limited by HRR and PPRR as well as weak combustion efficiency which results in high levels of HC and CO emissions. Engine geometry and operation parameter such as injection strategy and compression ratio can affect the reactivity of fuels in cylinders as well as the gas temperature increase rate which are the important factors in controlling RCCI combustion. Injection strategies such as single and double injections have been previously studied but the effects are still unpredictable and the effects of compression ratio towards combustion characteristic and emissions require further analysis. This work deploys a 3D computational fluid dynamic (CFD) combustion model to study the effects on combustion characteristic and emissions with respect to single injection, double injection strategy and compression ratio.
Technical Paper

Comparison of Simple and Detailed Soot Models in the Study of Soot Formation in a Compression Ignition Diesel Engine

2017-03-28
2017-01-1006
Application of computational method in studying soot formation and its characteristics has become more preferable in today’s automotive field. Current developments of computer programs with higher precision mathematical models enable simulation results to become closer to the real engine combustion phenomena. In the present study, investigation on soot has been performed using various soot models with different levels of complexity, from simple two-step Hiroyasu-NSC soot model to the detailed-kinetic soot model. Detailed soot models, Particulate Mimic (PM) which is based on methods of moment and Particulate Size Mimic (PSM) which is based on sectional method, are applied in this study. Result of soot mass from Hiroyasu-NSC model provides 120% error compare to experimental result, while both detailed models provide an acceptable error of 7%.
Technical Paper

Simulation of the Effect of Initial Temperature and Fuel Injection Pressure on Hydrogen Combustion Characteristics in Argon-Oxygen Compression Ignition Engine

2016-10-17
2016-01-2227
Hydrogen fuel is a potential energy source for vehicles in the future. The emission of this fuel complies with the stringent policies issued by the International Energy Agency (IEA). Researchers have nominated the hydrogen compression ignition engine in an argon atmosphere as one of the ways to enhance power output and volumetric efficiency in the midst of pre-ignition and knock problems. Since this type of research is still in the initial stage, numerical studies have become the best method for researchers to obtain data on hydrogen fuel combustion in an argon-oxygen atmosphere. The purpose of this study was to validate the simulation results with the experimental data, investigate the combustion characteristics of hydrogen fuel in an argon-oxygen atmosphere, and to study the effects of the initial temperature and injection pressure on the combustion process. In this research, CONVERGE CFD software was used for the simulation process.
Technical Paper

Modeling of In-Cylinder Soot Particle Size Evolution and Distribution in a Direct Injection Diesel Engine

2015-04-14
2015-01-1075
The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
X