Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Soot in the Lubricating Oil: An Overlooked Concern for the Gasoline Direct Injection Engine?

2019-04-02
2019-01-0301
Formation of soot is a known phenomenon for diesel engines, however, only recently emerged for gasoline engines with the introduction of direct injection systems. Soot-in-oil samples from a three-cylinder turbocharged gasoline direct injection (GDI) engine have been analysed. The samples were collected from the oil sump after periods of use in predominantly urban driving conditions with start-stop mode activated. Thermogravimetric analysis (TGA) was performed to measure the soot content in the drained oils. Soot deposition rates were similar to previously reported rates for diesel engines, i.e. 1 wt% per 15,000 km, thus indicating a similar importance. Morphology was assessed by transmission electron microscopy (TEM). Images showed fractal agglomerates comprising multiple primary particles with characteristic core-shell nanostructure. Furthermore, large amorphous structures were observed. Primary particle sizes ranged from 12 to 55 nm, with a mean diameter of 30 nm and mode at 31 nm.
Technical Paper

Assessing the Accuracy of Soot Nanoparticle Morphology Measurements Using Three-Dimensional Electron Tomography

2019-04-02
2019-01-1188
Morphology plays an important role in determining behaviour and impact of soot nanoparticles, including effect on human health, atmospheric optical properties, contribution to engine wear, and role in marine ecology. However, its nanoscopic size has limited the ability to directly measure useful morphological parameters such as surface area and effective volume. Recently, 3D morphology characterization of soot nanoparticles via electron tomography has been the subject of several introductory studies. So-called ‘3D-TEM’ has been posited as an improvement over traditional 2D-TEM characterization due to the elimination of the error-inducing information gap that exists between 3-dimensional soot structures and 2-dimensional TEM projections. Little follow-up work has been performed due to difficulties with developing methodologies into robust high-throughput techniques.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Journal Article

The Influence of Injection Strategy and Glow Plug Temperature on Cycle by Cycle Stability Under Cold Idling Conditions for a Low Compression Ratio, HPCR Diesel Engine

2012-04-16
2012-01-1071
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
X