Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Transient, 3D CFD, Moving Mesh Simulation of Vehicle Water Wading in a Water Tunnel with Inclined Entry-Exit

2022-03-29
2022-01-0768
Water wading tests are commonly performed for vehicles to ensure the functional integrity of different under-hood components at different water depths. This test has its relevance in both conventional Internal Combustion (IC) engine-based vehicles and Electric Vehicles (EVs). In IC engines, it is important for designing the Air Induction System (AIS), and for EVs, it helps to check the wetting of critical electrical and electronic components. The experimental setup for this test includes a long water tunnel where the car enters and exits the pool of water through a ramp. This work is an extension of the work done by Varshney et al. [6] where the Moving Reference Frame (MRF) technique was used to account for the motion of the car and the rotation of the wheels. The current work uses mesh morphing techniques to account for the motion of the vehicle and the rotation of the wheels that replicates the actual test conditions, including the inclination of the vehicle on the ramp.
Technical Paper

Design Optimization of Centrifugal Pump Using CFD Simulations, Metamodeling and Bayesian Inference

2022-03-29
2022-01-0787
Computational expenses aside, simulating and optimizing pumps operating at pressures near the liquid’s saturation pressure needs complete modeling of cavitation physics. This becomes critical in high-temperature applications since the saturation pressure increases with temperature and the pumps become more prone to cavitation. In the present work, the performance of a centrifugal pump was improved by delaying the sudden onset of cavitation at higher flow rates through constrained optimization of impeller geometry. The optimized designs generated over 25% higher head at the operating point and performed better than the baseline design across the range of operation. Constraints were dictated by geometric/ packaging limitations in order to ensure that the optimized impeller can be retrofitted into an existing fluid-power system. A Gaussian Process Regressor (GPR) based metamodel was constructed utilizing a database of designs generated through Latin Hypercube Sampling (LHS).
Technical Paper

CFD Method Development for Simulating Water Fording for a Passenger Car

2021-04-06
2021-01-0205
The present work deals with the development of a CFD method to simulate water fording/water wading for a passenger car. Water wading of automobiles in different water depths can lead to water ingestion into the air induction snorkel. This is unfavourable as this ingested water can cause the malfunction of the engine. This takes on an added importance when designing multi-terrain vehicles, where the interest could be in wading water effectively in many scenarios. The design of the snorkel, its position and height can be important in preventing water from entering the Air Induction System (AIS) and hence the engine. So, a water fording test of a vehicle is conducted to ensure the efficacy of the AIS snorkel in preventing water entering the AIS system. The ability of numerical simulations to effectively replicate testing performed in a long water tank is put to test in this paper. The CFD method development has been done using the commercial code, Simerics-MP+®.
Technical Paper

3D CFD Model of DI Diesel Low Pressure Fuel Pump System

2017-10-08
2017-01-2304
This paper discusses the holistic approach of simulating a low pressure pump (LPP) including test stand flow dynamics. The simulation includes all lines and valves of the test stand representing realistic test operating conditions in the simulation. The capability to capture all line dynamics enables a robust design against resonances and delivers high-quality performance data. Comparison with actual test data agrees very well giving us confidence in the prediction capability of proposed method and CFD package used in the study. Despite the large spatial extent of the simulation domain, Simerics-MP+ (aka PumpLinx) is able to generate a feasible mesh, together with fast running speed, resulting in acceptable turn-around times. The ability to still model small gaps and clearance of the LPP very efficiently enables inclusion of realistic tolerances as experienced on hardware.
Technical Paper

Numerical Modeling of Vane Oil Pump with Variable Displacement

2012-04-16
2012-01-0637
The oil flow rate in an automotive vane pump varies by virtue of the eccentricity between the inner rotor and the chamber wall. The movement of the chamber wall is facilitated by a ring-spring assembly which is pivoted and moves depending on the balance of system oil pressure and the pre-tensioned spring. In this paper, the ODE of kinetics of the solid piece spring motion is dynamically coupled with CFD simulation of oil flow in a vane pump. A re-meshing step is taken at every time step based on the update of the fluid domain which is determined from the ring position. The algorithm is implemented in the general purpose CFD code PumpLinx and applied to an automotive vane oil pump. The simulation results of pump performance curve are compared with the measurement data, together with the ring positions comparison. A very good agreement is observed between the simulation results and measurement data.
X