Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Thermal Comfort Simulation for Manufacturing Plants

2019-04-02
2019-01-0899
Manufacturing processes often produce a large amount of heat, which needs to be pumped out of the factory to maintain thermal stability and comfort. Thermal comfort is essential to maintain a suitable working environment in a factory. It has a strong impact on the health and productivity of workers. In addition, it is mandatory to keep the working environment within specified thermal and relative humidity ranges. Periodic assessments of these thermal parameters is routine in most factories. Inclusion of additional manufacturing equipment or processes can lead to a significant change in the working environment and consequent comfort, this needs to be addressed quickly. Rather than wait to measure these effects it is preferable to develop a reliable simulation method for the proactive study and improvement of thermal comfort levels. A reliable simulation approach is developed in this study for the prediction of thermal comfort in an automotive manufacturing plant.
Technical Paper

Finite Element Analysis and Test Correlation for Pressing and Staking of Planetary Gear Pinion Shaft

2018-04-03
2018-01-0481
During the assembly process of planetary gears, the pinion shaft is initially pressed in to the planetary carrier and then staking is performed to fix the pinion shaft to the carrier. The main purpose of the staking process is to prevent the movement of the pinion shaft during transmission operation. During assembly there should be minimal distortion of the assembly. The press-in process, pinion shaft and carrier are subjected to extremely high frictional loading due to the interference fit. The staking process permanently deforms the pinion shaft top and bottom ends, forming a protrusion that holds the shaft in position. The pinion shaft needs to sustain operational loads exerted by helical planetary gears, which tend to push the carrier flange out of position during operation. Staking length, staking force and interference between shaft and carrier hole are the critical parameters, which determine the maximum axial force that the pinion shaft can withstand.
Technical Paper

Non-Linear Finite Element Analysis of Valve Seats and Valve Guides Assembly in Engine Cylinder Head

2017-03-28
2017-01-1090
In the shop floor, cracking issue was noticed during assembly of valve seat and valve guide in the engine cylinder head, especially near the valve seating area. This paper reveals a non- linear finite element methodology to verify the structural integrity of a cylinder head during valve seat and valve guide assembly press-in operation under the maximum material condition, i.e., smallest hole size on cylinder head for valve seat and guide and largest diameter of valve seat and guide. Material and geometrical nonlinearities, and contact are included in this method to replicate the actual seat and guide press-in operation which is being carried out in shop floor. The press-in force required for each valve seat and valve guide assembly is extracted from simulation results to find out the tonnage capacity of pressing machine for cylinder head assembly line. Stress and plastic deformation due to assembly load are the criteria checked against the respective material yield.
Technical Paper

Fatigue Sensitivity Analysis Technique for Developing Accelerated Durability Test Load Cycles Based on Damage Prediction from CAE Model

2016-04-05
2016-01-0412
Tractors are the self-propelled vehicle which finds its major application in agriculture, haulage and construction equipment. The product development cycle time of a tractor is more as compared to automobiles since it has to undergo rigorous field testing. Bringing more realistic component and system level validation in the test lab will drastically reduce the product development cycle time. Non-availability of standard usage pattern and customer-correlated proving ground pose a bigger challenge for bringing the field conditions to the lab. As a result, the tractor has to be instrumented with sensors and load-time history needs to be acquired as per real world usage pattern. Raw data from the field cannot be used directly for lab testing since the number of load cycles will be very high. Raw data have to be edited based on damage calculation and fatigue sensitivity analysis technique.
Technical Paper

CAE Prediction and Test Correlation for Tractor Roll-over Protective Structure (ROPS)

2015-04-14
2015-01-1476
Roll-over protective structures (ROPS) are safety devices which provide a safe environment for the tractor operator during an accidental rollover. The ROPS must pass either a dynamic or static testing sequence or both in accordance with SAE J2194. These tests examine the performance of ROPS to withstand a sequence of loadings and to see if the clearance zone around the operator station remains intact in the event of an overturn. In order to shorten the time and reduce the cost of new product development, non-linear finite element (FE) analysis is practiced routinely in ROPS design and development. By correlating the simulation with the results obtained from testing a prototype validates the CAE model and its assumptions. The FE analysis follows SAE procedure J2194 for testing the performance of ROPS. The Abaqus version 6.12 finite element software is used in the analysis, which includes the geometric, contact and material nonlinear options.
X