Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Development and Demonstration of a Low Power Electrothermal Wing Ice Protection System for Regional Aircraft

2023-06-15
2023-01-1394
Under the EU Clean Sky 2 research project InSPIRe – Innovative Systems to Prevent Ice on Regional Aircraft, numerical and experimental studies have been performed to investigate the potential to minimise the electrical power required for wing ice protection on a regional aircraft wing. In a standard electrothermal de-ice protection scheme there is a parting strip heater which runs along the full spanwise protected extent and is permanently powered. This splits the ice formation on the leading edge into an upper and lower region, which makes it easier to shed. However, the parting strip is relatively energy intensive and contributes a significant portion of the overall power demand. Developing a system which is able to provide the desired ice protection function without a parting strip would therefore offer a substantial power saving. The great difficulty with such a system is in ensuring that acceptable ice shedding occurs.
Technical Paper

Numerical Investigation of Location and Coherence of Broadband Noise Sources for a Low Speed Axial HVAC Fan

2014-06-30
2014-01-2054
In hybrid and electrical vehicles new challenges in meeting the drivers' expectation with regards to acoustic comfort arise. The absence of the internal combustion engine noise enhances the passengers' perception of other noise sources, such as the Heating, Ventilation and Air-Conditioning (HVAC) system. Therefore efficient and reliable numerical models able to predict flow-induced broadband noise have become a major research topic in automotive industry. In this framework, the Zonal LES coupled with the Ffowcs Williams-Hawkings (FWH) acoustic analogy are capable to simulate broadband noise from low speed axial fan. As demonstrated in previous works from the authors, this approach is able to cope with the complexity of the physical phenomena involved (i.e. turbulent noise generation, laminar-to-turbulent transition, etc.), even though the numerical model requires a careful setup of the mesh topology, boundary conditions and simulation parameters.
Technical Paper

Modeling and Validation of Lithium-Ion Battery based on Electric Vehicle Measurement

2014-04-01
2014-01-1850
This contribution deals with the modeling and validation of multi-physical battery-models, by using the programming language Modelica. The article presents a battery model which can be used to simulate the electric, thermal and aging behavior of a lithium-ion traction battery of an EV in different load conditions. The model is calibrated with experimental data of an electric vehicle tested on a chassis dynamometer. The calibration parameters, that are the open circuit voltage, the serial resistance and the resistance and capacitance of two serially connected RC-circuits, are used to configure the electric equivalent circuit model of the battery. The calibration process is based on a best-fit of the measured data from one test, while the validation is made by comparing measured and simulated battery voltages of a different battery load cycle.
Technical Paper

Experimental Investigation of the Energy Efficiency of an Electric Vehicle in Different Driving Conditions

2014-04-01
2014-01-1817
Energy efficiency of electric vehicles (EVs) and the representativeness of different driving cycles are important aspects to address EVs performance in real-world driving conditions. This paper presents the results of an explorative tests campaign carried out at the Joint Research Centre of the European Commission to investigate the impact of different driving cycles on the energy consumption of an electric vehicle available on the market. The vehicle is a battery electric city-car which has been tested over the New European Driving Cycle (NEDC), the current version of the World-wide harmonized Light vehicles Test Cycle (WLTC) and the World-wide Motorcycle emission Test Cycle (WMTC). The tests are performed at different ambient temperatures (namely +23 °C and −7 °C) with and without the use of the Heating Ventilation and Air-Conditioning (HVAC) system (in cooling and heating mode, respectively).
Technical Paper

CPU Efficient Flow-Acoustic Design for Axial Fans

2012-06-13
2012-01-1564
Low noise design of ventilation systems is an emerging topic in modern vehicle industry, since the thermal and acoustic comfort experienced by the passenger is even more important to define design criteria of HVAC components. Despite of the recent progresses of numerical approaches in the frame of aerodynamic and aeroacoustic simulation, the state of the art in Computational Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA) is still far away to be capable to drive the design of low-noise targeted components. This is mainly due to the high complexity of physical phenomena involved in the noise generation mechanisms, mostly related to flow turbulence usually requiring approaches (e.g. Large Eddy Simulation, LES) with computational demands that cannot be easily afforded for industrial design purposes. The goal of this paper is providing an inexpensive, fast and reliable technique for the aeroacoustic simulation of broadband noise arising from axial fans.
X