Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Trim-structure interface modelling and simulation approaches for FEM applications

2024-06-12
2024-01-2954
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the substructuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed boundary and interface phenomena such as friction, stick-slip or discontinuities are not taken into consideration. Such an approach allows for faster simulations but results in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
Technical Paper

Patch Transfer Function Approach for Analysis of Coupled Vibro-Acoustic Problems Involving Porous Materials

2014-06-30
2014-01-2092
In many application fields, such as automotive and aerospace, the full FE Biot model has been widely applied to vibro-acoustics problems involving poro-elastic materials in order to predict their structural and acoustic performance. The main drawback of this approach is however the large computational burden and the uncertainty of the input data (Biot parameters) that may lead to less accurate prediction. In order to overcome these disadvantages industry is asking for more efficient techniques. The vibro-acoustic behaviour of structures coupled with poroelastic trims and fluid cavities can be predicted by means of the Patch Transfer Function (PTF) approach. The PTF is a sub-structuring procedure that allows for coupling different sub-systems via impedance relations determined at their common interfaces. The coupling surfaces are discretised into elementary areas called patches.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
X