Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Assessment of Cabin Leakage on Thermal Comfort and Fuel Efficiency of an SUV

2016-04-05
2016-01-0259
The main function of an air conditioning system in a vehicle is to provide the thermal comfort to the occupant at minimum possible energy consumption in all environmental conditions. To ensure the best possible thermal comfort, air conditioning system is optimized on various parameters like heat load, air flow distribution, glass area, trim quality, insulations and cabin leak rate. A minimum cabin leakage is regulatory requirements to ensure the air quality of cabin. Anything above the minimum cabin leak rate ultimately turn into reduced thermal comfort and additional energy consumption. The additional energy consumption to maintain the required thermal comfort in the cabin due to cabin leakage affects the fuel efficiency severely. In the present study, the effect of cabin leakage on fuel efficiency and thermal comfort is studied in details by varying the cabin leakage through mechanical means. The experiments are carried out in normal environmental condition and road condition.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

Scaling Model of Heat Exchangers in Automotive Air Conditioning Systems

2016-04-05
2016-01-0227
Heat exchangers are thermoregulatory system of an automotive air conditioning system. They are responsible for heat exchange between refrigerant and air. Sizing of the heat exchanger becomes critical to achieve the required thermal performance. In the present work, the behavior of heat exchanger with respect to change in size is studied in detail by developing a scaling model. The limited experiments have been conducted for 3 different condensers. Commercially available 1D tool GT Suite is used for simulations. The heat exchangers are modeled using COOL3D module of GT Suite. The experimental thermal capacities of heat exchanger are compared with the simulated values. A good agreement up to ±2.3% is found between the experiments and simulations. Then developed scaling model in GT Suite is used for predicting the thermal behavior of heat exchangers by changing the size of the heat exchanger. Scaled thermal capacities of each model is compared with the corresponding experimental results.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

Low Temperature Thermal Energy Storage (TES) System for Improving Automotive HVAC Effectiveness

2015-04-14
2015-01-0353
The prime focus of automotive industries in recent times is to improve the energy efficiency of automotive subsystem and system as whole. Harvesting the waste energy and averaging the peak thermal loads using thermal energy storage (TES) materials and devices can help to improve the energy efficiency of automotive system and sub-system. The phase change materials (PCM) well suit the requirement of energy storage/release according to demand requirement. One such example of TES using PCM is extended automotive cabin comfort during vehicle idling and city traffics including start/stop of the engine at traffic stops. PCM as TES poses high density and capacity in thermal energy storage and release. It is due to latent heat absorption and release during phase change. Generally the latent heat of a material compare to it sensible heat is much higher, almost an order of 2. For example, latent heat of ice is almost 160 times higher than sensible heat for a kelvin temperature rise of ice.
Technical Paper

A Simple Mechanism for AC Compressor Operation

2013-11-27
2013-01-2879
One of the most essential components of automotive HVAC system is compressor. In a vehicle it is directly mounted on the engine. It derives power from the engine feed system to keep refrigerant moving in the HVAC system of the vehicle. It is also essential to complete the vapor compression cycle. During the operation, it causes considerable load on the engine and thus results in lower fuel efficiency and higher pollution. There are several types of compressors available globally. According to construction it can be classified as reciprocating piston type, scroll type and rotary vane type. The reciprocating piston types of compressors are further classified as fixed displacement and variable displacement. Normally the fixed displacement compressors have good idling cooling performance, but it increases the load on the engine. To reduce the load on the engine and to have good idling cooling performance, generally a variable displacement compressor is used.
Technical Paper

A Simple Model for Calculating Vehicle Thermal Loads

2013-04-08
2013-01-0855
One of the most fundamental parameters for designing an automotive HVAC system is the thermal load, also known as cooling load. The major contributors to the thermal load inside the cabin of an automobile are solar loads, occupant loads, infiltration loads and loads due to various electrical fittings and the engine. Simple but accurate predictions of the thermal load inside the cabin will help engineers in designing and developing an efficient mobile air conditioning system. While commercial software are available for simulating these loads, such tools require tedious and time-consuming modeling of components involving many parameters as well as multiple iterations. A simple method for computation of the vehicle thermal load that requires a minimum of input parameters will be useful in situations where a full-scale analysis is not required. A computer model has been prepared for this purpose at Mahindra & Mahindra.
X