Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Semi-Physical NOx Model for Diesel Engine Control

2013-04-08
2013-01-0356
In this paper, a new physics-based model for the prediction of NOx emissions produced by diesel engines is presented. The aim of this work is to provide a reference model for the validation of control strategies and NOx estimators. The model describes the NOx production in the burned gas zone where the burned gas temperature sub-model is adapted to be generic and tunable. The model consists of three main sub-models for the estimation of the burned gas temperature, the concentration of the species in the burned gases and the NOx formation, respectively. A new model for estimating the burned gas temperature, known to have a strong impact on thermal NOx formation rate, is proposed. The model depends on the intake burned gas ratio and the combustion phasing computed from the cylinder pressure. This model has a limited number of calibration parameters identified so that NOx model output matches with experimental data measured in a four-cylinder, four-stroke, direct-injection diesel engine.
Technical Paper

State of the Art and Analysis of Control Oriented NOx Models

2012-04-16
2012-01-0723
Future pollutant emissions legislations are expected to be increasingly stringent. To reduce Nitrogen Oxides (NOx) emissions produced by Diesel engines, advanced combustion technologies - like Low Temperature Combustion (LTC) -, vehicle hybridization and NOx after-treatment systems - such as Selective Catalytic Reduction (SCR) systems - can be considered, leading to a growing demand for NOx models. In this paper, we present a state-of-art of the different existing NOx models, from the black-boxes to the three-dimensional Computational Fluid Dynamics (CFD) codes. A way to classify these models is proposed. The paper also introduces the current applications for each subgroup of models. Then, a black-box and two grey-box NOx models are studied regarding their accuracy and their sensitivity to model inputs. These models are validated for two Diesel engines on steady-state operating points as well as on transient operations. The semi-physical models accurately predict NOx emissions.
X