Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Emission Performance of Closed-Coupled SCR Catalysts To Be Applied for Double-SCR Systems

2022-08-30
2022-01-1016
To reach close to zero tailpipe NOx emissions, a double-SCR (selective catalytic reduction) system is proposed. In that, the first SCR unit would be placed upstream of the diesel particulate filter (DPF) and the second SCR unit downstream of DPF. This study focused on the experiments of the first SCR unit. The experiments were conducted utilizing a new, 4.4-liter heavy duty diesel engine that was connected to a research facility for studying after-treatment systems in controlled environment. Three different SCR’s: a vanadium-based SCR (V-SCR), a copper-based SCR (Cu-SCR) and a vanadium-based SCR including an ammonia slip catalyst (V-SCR+ASC) were studied. Studies were done at different exhaust temperatures from 215°C to 350°C. Emissions of NO, NO2, NH3, N2O, CO, CO2 and hydrocarbons were measured by FTIR. Particulate emissions (PM, PN) were studied as a part of the experiments. The results showed that the three SCR units performed differently.
Technical Paper

The Effect of a Particle Oxidation Catalyst (POC®) on Particle Emissions of a GDI Car during Transient Engine Operation

2013-04-08
2013-01-0839
Particle emissions have been generally associated to diesel engines. However, spark-ignition direct injection (SI-DI) engines have been observed to produce notable amounts of particulate matter as well. The upcoming Euro 6 legislation for passenger cars (effective in 2014, stricter limit in 2017) will further limit the particulate emissions from SI engines by introducing a particle number emission (PN) limit, and it is not probable that the SI-DI engines are able to meet this limit without resorting to additional aftertreatment systems. In this study, the solid particle emissions of a SI-DI passenger car with and without an installed Particle Oxidation Catalyst (POC®) were studied over the New European Driving Cycle (NEDC) on a chassis dynamometer and over real transient acceleration situations on road. It was observed that a considerable portion of particle number emissions occurred during the transient acceleration phases of the cycle.
Technical Paper

Emission Reduction Potential with Paraffinic Renewable Diesel by Optimizing Engine Settings or Using Oxygenate

2012-09-10
2012-01-1590
Over the past decade significant research and development activities have been invested in alternative fuels in order to reduce our dependency on fossil fuel sources and reduce CO₂ and local emissions from traffic. One result of these R&D efforts is paraffinic diesel fuels, which can be used with existing vehicle fleets and infrastructures. Paraffinic diesels also have other benefits compared to conventional diesels, for example, a very high cetane number and the lack of sulfur and aromatic compounds. These characteristics are beneficial in terms of exhaust gas emissions, something which has been demonstrated in numerous studies. The objective of this study was to develop low-emission combustion technologies for paraffinic renewable diesel in a compression ignition engine, and to study the possible benefits of oxygenated paraffinic diesel.
Journal Article

Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels

2012-04-16
2012-01-0366
The aim of this paper is to analyze the quantitative impact of fuel sulfur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulfur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulfur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulfur level. The Fuel Sulfur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC.
X