Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Methodology to Arrive at Passing Criteria of Plastic Parts Subjected to Vibration Fatigue

2023-04-11
2023-01-0089
In research and development of any automotive industry the main challenge is to virtually simulate probable failures rather than relying on physical testing which consumes time and resources. It is even more challenging when it comes to failure prediction of ABS plastic parts due to its complexity in material, behavior and assembly variations. ABS material is used extensively in automotive vehicles especially in motorcycles and scooters due to its visual and structural benefits at moderate cost. In this paper, the work showcases a methodology to predict failure of ABS parts. In order to do so, understanding the shortcomings in the current system is necessary. With the help of testing database history of various vehicles on proving grounds, root causes and drawback with respect to current simulation process are identified for failure of ABS parts. The input excitations from proving ground are probabilistic, thus, random vibration fatigue process is then introduced to calculate life.
Technical Paper

Failure Analysis of Injection Molded Parts Using Multi-Physics Approach

2015-04-14
2015-01-0669
Automotive OEM's are looking for innovative solutions to capture the possible failure due to warpage and shrinkage of an insert molded part through virtual simulations with help of FEA tools, thereby saving the mold cost, material cost and time. This work demonstrates an approach to study and simulate the failure of an insert molded part which happened after few days of the part molding under idle condition. To simulate the above failure, an innovative approach coupling Moldflow and Abaqus software was derived. First, a flow simulation including phase change of plastic material was carried out with derived parameters, results of which were exported as input to the Abaqus structural solver. Secondly, a thermo-mechanical analysis of the model was then carried out considering the thermal and moisture effect on material property. A good correlation was achieved between the actual failure location and max stress location as predicted by said coupled approach.
Technical Paper

Compliant Mechanisms - Integration of Micro Gripping Device with Positioner Using Topological Optimization

2015-04-14
2015-01-0499
Material energy and cost minimization has been the need of the hour off late. The work aims at designing a micro gripping device which has suitable application in bio medical industry; specifically surgical operation of comminuted fracture using CAE software. Being a combination of an inverter and a clip, the ability of the compliant mechanism to be used as a gripper as well as positioner constitutes its rare versatility. The compliant mechanisms are single-piece structures, having no backlash as in case of rigid-body, jointed mechanisms and comparatively cheaper to manufacture. Designed in MATLAB R2008a using the concept of topological optimization, modeled in AutoCAD Mechanical 2011 and analyzed in ANSYS Workbench 13.0; the mechanism is initially designed with a geometrical advantage of 2. The MATLAB code which is an improvement of the 99 line code written by O.
Technical Paper

Study of Fluid Structure Interaction due to Water Splashing on the Rear Fender of Motorcycles

2015-04-14
2015-01-0673
Automotive OEM's are looking to develop plastic parts with maximum life and durability through virtual simulations with help of CAE tools, thereby saving the mold cost, material cost and time. The design constrains would be manufacturability, loads, boundary condition and aesthetics. This work involves the multi-discipline approach to virtually visualize the effect of fluid structure interaction due to splashing on the rear fender of a motorcycle which acts as mud guard. This study shows effect of splashing of water over rear fender on wet roads. First, the pressure developed on the rear fender due to impingement of water on surface is obtained through a multiphase volume of fluid analysis using CFD software Fluent. Secondly, these pressure values are taken as input in Abaqus software and the part is analyzed for its durability.
X