Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Fundamental Study of Waste Heat Recovery in the High Boosted 6-cylinder Heavy Duty Diesel Engine

2015-04-14
2015-01-0326
In heavy duty diesel engines, the waste heat recovery has attracted much attention as one of the technologies to improve fuel economy further. In this study, the available energy of the waste heat from a high boosted 6-cylinder heavy duty diesel engine which is equipped with a high pressure loop EGR system (HPL-EGR system) and low pressure loop EGR system (LPL-EGR system) was evaluated based on the second law of thermodynamics. The maximum potential of the waste heat recovery for improvement in brake thermal efficiency and the effect of the Rankine combined cycle on fuel economy were estimated for each single-stage turbocharging system (single-stage system) and 2-stage turbocharging system (2-stage system).
Technical Paper

Further Improvement in Brake Thermal Efficiency of a Single-Cylinder Diesel Engine by Means of Independent Control of Effective Compression and Expansion Ratios

2014-04-01
2014-01-1198
Heat loss reduction could be one of the most promising methods of thermal efficiency improvement for modern diesel engines. However, it is difficult to fully transform the available energy derived from a reduction of in-cylinder heat loss into shaft work, but it is rather more readily converted into higher exhaust heat loss. It may therefore be favorable to increase the effective expansion ratio of the engine, thereby maximizing the brake work, by transforming more of the enthalpy otherwise remaining at exhaust valve opening (EVO) into work. In general, the geometric compression ratio of a piston cylinder arrangement has to increase in order to achieve a higher expansion ratio, which is equal to a higher thermodynamic compression ratio.
X