Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine

2015-01-14
2015-26-0095
This paper summarizes the research work incorporated in the exploration of the potential of swirling in CI Engine and designing of a new mechanism, particularly at inlet, to deliver it to improve the in-cylinder air characteristics to eventually improve mixing and combustion process to improve the engine performance. The research is concentrated on the measures to be done on engine geometry so as to not only deliver advantage to any specific fuel. According to the CI combustion theory, better engine performance may be achieved with Higher Viscous Fuel by improving the in-cylinder air-fuel mixing by increasing the swirl (rotation of air view from top of the cylinder) and tumble (rotation of air view from front of the cylinder) of in-cylinder air inside the fuel-injected region. The proposed inlet component is embedded with airfoil and is suitably designed after being iterated from four steps.
Journal Article

Detailed Analysis of Variables Affecting Wing Kinematics of Bat Flight

2013-12-20
2013-01-9003
Body motions of flying animals can be very complex, especially when the body parts are greatly flexible and they interact with the surrounding fluid. The wing kinematics of an animal flight is governed by a large number of variables and thus the measurement of complete flapping flight is not so simple, making it very complex to understand the contribution of each parameter to the performance and hence, to decide the important parameters for constructing the kinematic model of a bat is nearly impossible. In this paper, the influence of each parameter is uncovered and the variables that a specified reconstruction of bat flight should include in order to maximally reconstruct actual dimensional complexity, have been presented in detail. The effects of the different kinematic parameters on the lift coefficient are being resulted.
Technical Paper

Computational Analysis of 3D Unsteady Flow Over Flapping Wing

2013-09-17
2013-01-2098
This paper summarizes the complex unsteady, 3-D viscous flow aerodynamics (dominantly laminar) developed in flapping wing generating vortices and intersecting with them. Different flying creatures, (Insects, Birds, and Bats) flapping wing mechanisms are studied and hence being compared based on their wing kinematics and aerodynamic efficiency. The performance of low Reynolds number flyers is highly influenced by the wing shape, wing size, wing camber, aspect ratio, % camber thickness, elastic deformation, wing-beat frequency and wing twisting. The Computation technique used to analyze the wake characteristics of a flapping motion shows that the generation and shedding of vortices dominate the aerodynamic loading on the wing. The periodicity of the wing motion and the resultant vortices leads to conclude that any quantitative model must be based on unsteady aerodynamics and vortex dynamics.
X