Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Integration of a Regenerative Braking System into a Full-Electric-Vehicle

2013-03-25
2013-01-0062
Driven by the will to gain further know-how and experience in the field of electric vehicles, and to demonstrate IDIADA's engineering capability, IDIADA decided to convert an existing light commercial vehicle, a Nissan Cabstar, into a fully electric vehicle. The brake department of Applus+ IDIADA investigated and developed different concepts of Regenerative Braking Systems (RBS) for this Electric Vehicle project, all of which based on the existing braking system, but with extended sensors. Thanks to their developments and technologies, Applus+ IDIADA succeeded in demonstrating the potential of electric vehicles. This presentation, with focus on the development and integration of the concept, aims at giving a brief overview on the results achieved so far.
Journal Article

Simulation-based Certification of ESC Systems for Passenger Vehicles in Europe

2012-04-16
2012-01-0235
In today's automotive climate, the tendency of an increasing number of vehicle model variants offered is coming to a head with the growing demands for safer vehicles. New legislation now ensures that the safety improvement by the fitment of stability control systems is certified for each new vehicle. Beginning year 2012, all new cars to be sold in the European Union have to be equipped with ESC, and as means to test performance, a new supplement to ECE R13 requires that the Sine-with-Dwell test be passed. As a result, OEMs have to handle the task of demonstrating that all their vehicles meet homologation requirements. With such a range of variants possible in each model, this can lead to an enormous quantity of testing. However, for the first time, ECE R13 allows homologation to be undertaken by test-supported simulation, and it is now possible to transfer more and more of this work into CAE.
X