Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Life-Cycle Integration of Titanium Alloys into the Automotive Segment for Vehicle Light-Weighting: Part II - Component Life-Cycle Modeling and Cost Justification

2012-04-16
2012-01-0785
To warrant the substitution of traditionally used structural automotive materials with titanium alloys, the material substitutional and redesign advantages must be attainable at a justifiable cost. Typically, during material replacement with such ‘exotic’ aerospace alloys, the initial raw material cost is high; therefore, cost justification will need to be realized from a life-cycle cost standpoint. Part I of this paper highlighted the redesign, fabrication, and validation of an automotive component. Part II details the particulars of constructing the total life-cycle cost model for both prototypes (P1, P2). Considerations in the model include adaptation to a high volume production scenario, availability of near-net size plate/bar stock, etc. Further, response surfaces of fuel costs savings and consequent life-cycle costs (state-variables) are generated against life-cycle duration and unit fuel price (design-variables) to identify profitable operating conditions.
Journal Article

Life-Cycle Integration of Titanium Alloys into the Automotive Segment for Vehicle Light-Weighting: Part I - Component Redesign, Prototyping, and Validation

2012-04-16
2012-01-0784
Current vehicle manufacturers must meet economic demands and design/manufacture more fuel efficient vehicles with increasingly better performance. As a result, they are turning to the use of more non-traditional lightweight materials in their products. One favorable material due to its excellent strength-to-weight ratio and high corrosion resistance is titanium. However, to warrant the replacement of traditional materials with titanium alloys there must be the benefit of reduced vehicle mass as well as performance enhancement gains from the substitution at a justifiable cost. In this work, an unsprung suspension component is selected and redesigned from the standpoint of (i) a direct material substitution and (ii) a material and requirements consideration based substitution. In addition, for the redesign of the component in titanium, the manufacturing procedure and process plan is integrated into the design phase for the component.
X