Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Estimation of the Clutch Characteristic Map for an Automated Wet Friction Clutch Transmission

2016-04-05
2016-01-1113
Higher demands on comfort and efficiency require a continuous improvement of the shift process. During the launch and shift process the clutch control is used to get a smooth and efficient behavior. In this short time of acting the shifting behavior can be rated. Many control concepts use a clutch characteristic to calculate the actuator signal based on the clutch torque. Therefore, a high quality of this characteristic is necessary. Because of the dynamic process during clutch engagement the clutch characteristic needs further information to reach a high accuracy for the control algorithm. In this paper an existing clutch torque characteristic is extended to a characteristic map where the clutch torque becomes a function of the current actuator signal of the clutch and the clutch slip. The extension of the torque characteristic describes the slip based dependencies, e.g. the friction coefficient.
Technical Paper

Method for Identification of the Kiss Point as well as Takeoff Point of a Hydraulically Actuated Friction Clutch

2012-04-16
2012-01-0112
For control of most automatic transmissions with wet clutches (e.g. dual clutch transmission), it is important to know the kiss point with high accuracy. The kiss point describes the value of the control variable for which the friction clutch begins to transmit torque. Another significant value during the filling process of a wet clutch is the takeoff point. This is the hydraulic pressure which causes the clutch piston to begin to move. This paper presents an innovative approach that enables the joint determination of the kiss point as well as the takeoff point in only one identification procedure. In contrast to existing methods, this method is able to identify both points without the necessity for undesired auxiliary system excitation. Therefore it is possible to reduce wear on system components such as synchronization rings. The method presented in this paper analyzes the measured filling pressure characteristic over time as the system response to a defined excitation.
X