Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Further Experimental Study of Asymmetric Plugging Layout on DPFs: Effect of Wall Thickness on Pressure Drop and Soot Oxidation

2015-04-14
2015-01-1016
In order to guide the development of asymmetric plugging layout Diesel Particulate Filters, hereafter referred to as “VPL-DPF”, in this paper we present some evaluation results regarding the effect of design parameters on the VPL-DPF performance. VPL-DPF samples which have different wall thicknesses (thin and thick walls) were evaluated in regards to their pressure drop and soot oxidation behaviors, with the aim to optimize the design of DPF structure. As a result of pressure drop evolution during soot loading, contrary to our expectation, in some cases, it was found out that VPL increases the transient pressure drop compared to the conventional plugging layout DPF. That meant there is an appropriate specific optimum wall thickness for adoption of VPL which has to be well defined at its structural design phase. Based on our previous research, it is expected that this result is due to interactions among the different (five) wall flows that exist in a VPL-DPF.
Technical Paper

Experimental Study of Physical and Chemical Properties of Soot under Several EGR Conditions

2014-04-01
2014-01-1593
Exhaust Gas Recirculation (EGR) is an effective method to reduce Nitrogen Oxide emissions. In recent years the trend of increasing EGR rate in-cylinders is an integral part of most improvements in combustion technology developments. The object of this work is to study the influence of EGR rate on the physical and chemical properties of soot particles. Soot from several operating points of a diesel engine run were collected on a high temperature filters. The pressure drop behavior during the soot loading was monitored then the soot permeability was calculated. Afterwards, the soot primary size was calculated from the obtained data and it showed good correspondence to the actual measurement. It is confirmed that all the soot primary sizes were around 22 nm in diameter. In contrast, the soot aggregate sizes and the soot concentrations were found to increase with increasing EGR rate. Subsequently, Oxidation tests were conducted to evaluate the reactivity of the soot.
Technical Paper

Durability of Filtration Layers Integrated into Diesel Particulate Filters

2013-04-08
2013-01-0837
This paper describes the durability of the filtration layer integrated into Diesel Particulate Filters (DPFs) that we have developed to ensure low pressure loss and high filtration efficiency performances which also meet emission regulations. DPF samples were evaluated in regards to their performance deterioration which is brought about by ash loading and uncontrolled regeneration cycles, respectively. Ash was synthesized by using a diesel fuel/lubrication oil mixture and was trapped up to a level which corresponded to a 240,000km run, into the DPFs both with and without the filtration layer. Afterwards, aged-DPFs were measured with respect to their permeability, pressure loss, filtration efficiency, as well as soot oxidation speed using suitable analytical methods. Consequently, it has been confirmed that there was no noteworthy deterioration of the performances in the DPF with the filtration layer.
Technical Paper

Performance Improvement of Diesel Particulate Filter by Layer Coating

2012-04-16
2012-01-0842
Nowadays diesel particulate filters (DPFs) with catalyst coatings have assumed one of the most significant roles for road vehicle emission control. DPFs made of re-crystallized SiC (SiC-DPFs) have guaranteed the soot filtration efficiency for the current regulation. In order to further enhance their filtration efficiency, even though a higher porosity and larger pore size must be adopted for sufficient catalyst coating capacity, we developed the concept of a filtration layer on the DPF inlet channel walls and researched its performance both theoretically and experimentally. First of all, models of the new filtration layer, closely resembling the real one made in the laboratory, were digitally reconstructed and soot deposition simulations were conducted.
X