Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

Multidisciplinary Investigation of Truck Platooning

2020-06-30
2020-37-0028
In the age of environmental challenges, and with it the demand for increasing energy efficiency of commercial vehicles, truck platooning is discussed as a promising approach. The idea is several trucks forming an automated convoy - with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address fuel savings, traffic capacity, safety requirements and convenience. In our study, we will motivate why platooning requires a multidisciplinary approach in the sense of connecting different modeling and simulation methods. The simulation topics covered are aerodynamic analysis, vehicle-to-vehicle (V2V) communication, radar antenna placement and virtual drive cycle test for the energy evaluation of a truck platoon in comparison to a single truck.
Journal Article

Study on the Capability of an Open Source CFD Software for Unsteady Vehicle Aerodynamics

2012-04-16
2012-01-0585
A wind-tunnel experiment investigating unsteady flow phenomena around a generic notchback during single crosswind gusts is modeled with the open source CFD package OpenFOAM®. The overall objective is to assess the capability and accuracy achieved by the simulation tool with respect to its potential for industrial usage. Transient yaw simulations apply a sliding interface between two computational grids, which are generated using the commercial software Spider®. It is shown that a stable simulation process is feasible but requires long computation times. The physical accuracy of the investigated phenomena depends on the computational grid and on the turbulence model used. Although the obtained aerodynamic loads qualitatively correspond with the experimental results, the absolute values are not satisfactory when working with a coarse grid with 6.2 million cells. Then, characteristic surface pressure distributions and their transient development differ from the experimental data.
X