Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

PN Formation Mechanism and Countermeasures with the Spray Design on Port Fuel InjectionSI Engine

2018-04-03
2018-01-1417
Despite the known benefits of direct injection spark ignition engines, PFI (port fuel injection) remains a relevant concept for cost-sensitive market segments. PN emissions limits is already expected for future emission legislations also for PFI engines (in China). This paper explains the mechanisms of PN production correlated with: CFD experiments on NA engine (natural aspirated engine) and turbo engine, Visiolution from AVL, Test bench measurements with gas analysis and PN measurement. Previous studies showed impact of the spray layout, injection timing, charge motion, operating points of the engine, temperature and fuel effect. This paper mainly focuses on the spray design of the injector through the pattern, the homogeneity of injector pattern having the main contribution in relationship with PN reduction.
Technical Paper

Experimental and Numerical Investigations of Tumble Motion on an Optical Single Cylinder Engine

2015-04-14
2015-01-1698
This paper is focused on the experimental and numerical investigation of tumble motion on a single cylinder optical engine on three important parameters like engine load conditions, engine speed and level of tumble. Experiments are conducted in an optical engine and the velocity fields are measured with the aid of advanced particle image velocimetry (PIV) measurement technique. For simulation, multiple cases were considered to develop the numerical process for transient in-cylinder aerodynamics to capture the tumble motion and turbulence level in a Spark Ignited (SI) engine. The simulation results, velocity fields of each case were directly compared with the corresponding test results for different crank positions of the engine. On comparison, a good agreement between the measurement and the simulation is obtained for different configurations.
Technical Paper

Numerical Spray Modeling for Ultra Low Cost (ULC) Gasoline Engine

2013-04-08
2013-01-1606
The main objective of this study is to determine the appropriate boundary conditions for the distribution of droplet sizes, speed of the fuel settling at the nozzle of the injector and droplet penetration by numerical simulation using STARCD for a 3-holes injector of ULC-GE. In this study, the Eulerian- Lagrangian approach has been used to model the multiphase domain. A new strategy has been adapted to model droplet initial conditions using the Rosin-Rammler distribution, which is determined by measurement of the Sauter Mean Diameter D₃₂ and the De Brouckere Mean Diameter D₄₃ by the MALVERN method. Further, these droplets undergo the phenomenon of atomization by secondary break-up method and evaporation in the Eulerian domain. The numerical model has been used to evaluate the effects of different initial condition of droplets by changing the discharge coefficient of the nozzle, and the initial droplet size distribution at the nozzle tip.
Technical Paper

Study of Intake Ports Design for Ultra Low Cost (ULC) Gasoline Engine Using STAR-CD

2012-04-16
2012-01-0407
In this study, different designs of intake ports for two-stroke Ultra Low Cost Gasoline Direct Injection Engine (ULC-GE) has been analyzed to conclude on best design using steady state analysis in STAR-CD. The four types of intake ports design with two cylinders, each having fourteen ports, have been studied. The basic differences in designs are horizontal inlet entry (perpendicular to cylinder axis) and vertical inlet entry (in-line with cylinder axis) having rotation of flow clockwise and anticlockwise. Each type is further differentiated in eight cases with varying distances between axis of two-cylinder as 85mm, 88mm, 91 mm, 94 mm, 97 mm, 100 mm, 105 mm and 112 mm. These designs are analyzed for four different pressure drops as 10 mbar, 50 mbar, 100 mbar and 150 mbar.
X