Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Selecting an Expansion Machine for Vehicle Waste-Heat Recovery Systems Based on the Rankine Cycle

2013-04-08
2013-01-0552
An important objective in combustion engine research is to develop strategies for recovering waste heat and thereby increasing the efficiency of the propulsion system. Waste-heat recovery systems based on the Rankine cycle are the most efficient tools for recovering energy from the exhaust gas and the Exhaust Gas Recirculation (EGR) system. The properties of the working fluid and the expansion machine have significant effects on Rankine cycle efficiency. The expansion machine is particularly important because it is the interface at which recovered heat energy is ultimately converted into power. Parameters such as the pressure, temperature and mass-flow conditions in the cycle can be derived for a given waste-heat source and expressed as dimensionless numbers that can be used to determine whether displacement expanders or turbo expanders would be preferable under the circumstances considered.
Technical Paper

Comparison of Working Fluids in Both Subcritical and Supercritical Rankine Cycles for Waste-Heat Recovery Systems in Heavy-Duty Vehicles

2012-04-16
2012-01-1200
In a modern internal combustion engine, most of the fuel energy is dissipated as heat, mainly in the form of hot exhaust gas. A high temperature is required to allow conversion of the engine-out emissions in the catalytic system, but the temperature is usually still high downstream of the exhaust gas aftertreatment system. One way to recover some of this residual heat is to implement a Rankine cycle, which is connected to the exhaust system via a heat exchanger. The relatively low weight increase due to the additional components does not cause a significant fuel penalty, particularly for heavy-duty vehicles. The efficiency of a waste-heat recovery system such as a Rankine cycle depends on the efficiencies of the individual components and the choice of a suitable working fluid for the given boundary conditions.
X