Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Nondestructive Evaluation of Adhesively-Joined Aluminum Alloy Sheets Using an Ultrasonic Array

2015-04-14
2015-01-0702
Adhesive bonding technology has gained ever-increasing significance in automotive industry, especially with the growing use of aluminum (Al) alloy body structures. The variability in thicknesses of the metal and adhesive layers, as well as in joint geometry, of automotive components has presented challenges in nondestructive evaluation of adhesive joints. Though these challenges were recently overcome for steel-adhesive joints using an ultrasonic pulse-echo technique, the difference in acoustic impedances of steel and Al leads to a lack of robustness in utilizing the same algorithm for Al-adhesive joints. Here, we present the results from using a modified version of this technique to inspect Al-adhesive joints in both laboratory and production environments. A 15-MHz, 52-pixel, 10 mm × 10 mm matrix array of ultrasonic transducers was used to obtain ultrasonic pulse echoes from joint interfaces, analysis of which produced C-scan images of the adhesive bead.
Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
X