Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Technical Paper

TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings

2015-09-01
2015-01-1872
For better understanding of in-cylinder soot formation processes and governing factors of the number of emitted soot particles of Gasoline Direct Injection (GDI) engines, Transmission Electron Microscope (TEM) analysis of morphology and nanostructure of the soot particles sampled in the exhaust should provide useful information. However, the number concentration of the soot particles emitted from GDI engines is relatively low, which was impeding reliable morphological analysis of the soot particles based on a sufficient number of sampled particles. Therefore, in the present study, a water-cooled thermophoretic sampler for simple and direct sampling of exhaust soot particles was developed and employed, which enabled to obtain a sufficient number of particle samples from the exhaust with Particulate Number (PN) 105 #/cc level for quantitative morphology analysis.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
X