Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Use of Combined CAE and Experimental Testing Approach for Engine Noise Reduction

2015-01-14
2015-26-0123
The work presented in this paper deals with the use of combined Computer Aided Engineering (CAE) and experimental testing approach for reducing engine noise. The paper describes a systematic approach for giving solutions to the structure borne engine noise related problems. Noise Source Identification (NSI) was carried out on diesel engine to identify noise radiating sources, ranking of noise sources was carried out and contribution of individual engine component in radiated Sound Power Level (SWL) was computed. Detailed Finite Element Model (FEM) of engine assembly was developed and model was correlated in terms of natural frequencies and transfer functions by performing modal testing. Correlated FEM was used for predicting surface vibration velocities under various engine speeds and loading conditions in frequency domain. Velocities so predicted in frequency domain were used as an input for SWL prediction using Boundary Element Method (BEM) approach.
X