Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Snow Effects on the NGCTR Nacelle for Relevant Certification Conditions

2023-06-15
2023-01-1373
This paper is focused on the numerical analysis of the impingement and water catch rate of snow particles on the engine air intake of the Next Generation Civil Tilt Rotor (NGCTR). This NGCTR is developed by Leonardo Helicopters. The collection efficiency and water catch rate for the intake geometry are obtained for the test cases that have been defined for the relevant snow conditions. These conditions are related to the flight envelope of the NGCTR, existing EASA/FAA certification specifications, and the snow characterization. The analyses have been performed for the baseline air intake geometry. A range of particle diameters has been simulated with a particle density equal to the density of ice and with a particle drag relation that disregards the particle shape.
Technical Paper

Using Concurrent Modeling of Thermodynamics and Controller in Developing ECS Control Functionality

2017-09-19
2017-01-2160
In new aircraft programs, systems’ functionality is increasingly becoming integrated into modular avionics. Controllers may not be delivered by the systems supplier so this trend creates a new interface between systems and controllers. A functional software specification is therefore needed to facilitate the building of the software by the controller supplier. In the case of an ECS system controller, the hardware was obtained from different suppliers and a software functional specification was needed for the controller supplier. To be able to design and verify the system functionality, an integrated ECS simulation model was created which coupled the thermodynamics of the aircraft and ECS system to the controller actions. The model also included functionality to simulate sensor noise and component failures. The thermodynamic model was created in Matlab/Simulink and consisted of a combination of direct programming as well as data on a Flowmaster model for the bleed system.
X