Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
Technical Paper

Comparison of Numerical Simulations with Experimental Data for an Electrothermal Ice Protection System in Appendix O Conditions

2023-06-15
2023-01-1396
This paper provides information on the comparison of numerical simulations with experimental data for an electrothermal ice protection system with a focus on Appendix O [1] Freezing Drizzle (FZDZ) and Freezing Rain (FZRA) conditions. The experimental data is based on a test campaign with a 2D NACA23012 wing section in the RTA Icing Wind Tunnel in Vienna. 22 icing runs (all either unheated or in anti-ice mode) were performed in total and all residual ice shapes were documented by means of high-resolution 3D scanning. Unheated FZDZ and FZRA reference as well as heated cases with different heater configurations are presented. The experimental results are compared to numerical predictions from two different icing codes from AeroTex GmbH (ATX) and the University of Applied Sciences FH JOANNEUM (FHJ) in Graz. The current capabilities of the codes were assessed in detail and regions for improvement were identified.
Technical Paper

Numerical Simulation of In-flight Icing by Water Droplets with Elevated Temperature

2023-06-15
2023-01-1477
When conducting experiments in icing wind tunnels (IWTs), a significant question is to what extent the temperature of the water droplets generated by the spray system has converged to the static air temperature when the droplets impinge on the test object. This is a particularly important issue for large droplets, since the cooling rate of droplets decreases sharply with increasing diameter. In this paper, on the one hand, realistic droplet temperature distributions in the measurement section of the Rail Tec Arsenal IWT (located in Vienna) are computed by means of a numerical code which tracks the paths of the droplets from the spraying nozzle to the measurement section and simultaneously calculates their cooling rates. On the other hand, numerical icing simulations are performed to investigate to what extent the deviation of the droplet temperature from static air temperature influences icing and thermal anti-icing processes.
Technical Paper

Validation of Ice Roughness Analysis Based on 3D-Scanning and Self-Organizing Maps

2019-06-10
2019-01-1992
3D-scanning is an established method for the documentation of wing ice accretion. The generated 3D-data can be used to determine specific parameters of interest, like the local ice-thickness, or the surface ice roughness. The surface roughness has significant impact on the heat transfer, and therefore on the icing process itself. Insights into the effects of surface roughness on the ice accretion and the correlated aerodynamical effects contribute to the improvement of icing codes. In this paper, the surface roughness of various test specimens is determined by performing a self-organizing maps (SOM) approach for roughness point cloud analysis on data generated with a 3D-scanner. A validation of the SOM method is achieved by means of focus variation microscopy and a mathematical proof of the utilized SOM algorithm. Different scanning systems from several manufacturers are used to determine the surface of different sandpapers.
Technical Paper

A Refined In-Flight Icing Model and its Numerical Implementation

2019-06-10
2019-01-1937
A refined in-flight icing model is proposed whose primary focus lies on an improved prediction of the runback dynamics. The most significant capabilities/properties of the model are: Incorporation of surface tension and wetting effects in the runback model Fully transient treatment of the ice accretion/depletion process and the runback flow Treatment of unsteady heat transfer in the runback layer, the accreted ice layer and the underlying substrate as well as phase transitions solid/liquid in the ice layer Strict mass- and enthalpy-conservative growth/depletion of the ice layer (this is achieved by a specially designed mesh deformation algorithm) An essential part of the paper is devoted to the treatment of surface tension and wetting effects: These effects result from disjoining pressure contributions to the pressure terms in the runback continuity equation, i.e., these effects are inherent properties of the simulated runback dynamics.
Technical Paper

Extension of a 2D Algorithm for Catch Efficiency Calculation to Three Dimensions

2019-06-10
2019-01-2013
Accurate calculation of the catch efficiency β is of paramount importance for any ice accretion calculation since β is the most important factor in determining the mass of ice accretion. A new scheme has been proposed recently in [1] for accurately calculating β on a discretized two-dimensional geometry based on the results of a Lagrangian droplet trajectory integrator (start and impact conditions). This paper proposes an extension to the algorithm in Ref. [1], which is applicable to three-dimensional surfaces with arbitrary surface discretization. The 3D algorithm maintains the positive attributes of the original 2D algorithm, namely mass conservation of the impinging water, capability to deal with overlapping impingement regions and with crossing trajectories, computational efficiency of the algorithm, and low number of trajectories required to reach good accuracy in catch efficiency.
Journal Article

Aerodynamic Assessment of Complex 3D Ice Shape Replications

2019-06-10
2019-01-1936
This work introduces an approach allowing the detailed replication of ice shapes generated in icing wind tunnels, with a special focus on complex and strongly varying ice structures, e.g., ice feathers or residual ice stemming from incomplete removal of accreted ice by ice protection systems. 3D-scans are used as an input for the manufacturing process of the ice shape replica. The manufacturing approach itself is based on additive techniques using semi-flexible materials. In contrast to existing replication techniques, this approach allows also clean areas between ice-covered surface locations. In the present paper, a quality assessment based on the comparison of the lift coefficients of real and corresponding artificial ice shapes is presented.
Technical Paper

Ice Shape Mapping by Means of 4D-Scans

2015-06-15
2015-01-2151
When studying ice accretion processes experimentally it is desirable to document the generated ice shapes as accurately as possible. The obtained set of data can then be used for aerodynamic studies, the improvement of icing test facilities, the development of design criteria, the validation of ice accretion simulation tools as well as other applications. In the past, various ice shape documentation methods have been established including photography, cross-sectional tracing, molding and casting as well as 3D-scanning. This work introduces a new ice shape documentation technique based on active 3D-scanning in combination with fluorescent dyes and an optimized set of optical filters. The new approach allows recording the time-resolved three dimensional growth of an arbitrary ice shape. Based on this concept a so-called 4D-scanning system is developed, which allows a detailed evaluation of icing experiments and hence a better understanding of the ice accretion process itself.
Technical Paper

Thermal Ice Protection of Restraining Grids in the Environmental Control System of Passenger Aircraft

2015-06-15
2015-01-2095
This paper deals with thermal ice protection of electrically heated restraining grids designed for applications in the environmental control system (ECS) of passenger aircraft. The restraining grids described in the paper consist of strung, electrically insulated wire and are - in certain operation modes of the ECS - exposed to an airstream containing supercooled water droplets and/or ice particles. Heat is generated in the wire by an electric current, and the temperature of the wire is controlled with the aid of an electronic control system. A substantial question for laying out the controller and for operating the grids is the following: What minimum heating power is required to prevent ice accretion on the surface of the wire, i.e., what is the least heating power that is necessary to keep a grid being exposed to specific icing conditions devoid of ice? This problem is studied for a simple model system first and is then examined for restraining grids.
Technical Paper

Computational and Experimental Investigation of Ice Particle Accretion in a Generic Pack Discharge Duct

2015-06-15
2015-01-2082
Certain operating modes of the Environmental Control System (ECS) of passenger aircraft are accompanied with significant ice particle accretion in a number of pivotal parts of the system. Icing conditions particularly prevail downstream of the air conditioning packs and, as a consequence, ice particle accretion takes place in the Pack Discharge Duct (PDD) and in the mixing manifold. For a better understanding of these icing processes, numerical simulations using a multiphase model based on a coupled Eulerian-Lagrangian transport model in a generic PDD were performed. The obstruction of the PDD due to ice growth and the resulting change of the flow geometry were treated by deforming the computational mesh during the CFD simulations. In addition to the numerical investigations, a generic and transparent PDD was studied experimentally under several operating conditions in FH JOANNEUM's icing wind tunnel.
X