Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Technical Paper

Heat and Mass Flow Characterization of Highly Viscous Fluid in Narrow-Channel Heat Exchanger

2014-04-01
2014-01-1181
Channel diameter is one of the most important parameters of a heat exchanger especially for a highly viscous fluid-flow. Narrow channel heat exchangers are believed to have better energy efficiency due to elevated heat transfer characteristics. Heat transfer and Fluid-flow behaviors of Automatic Transmission Fluid (ATF) have been experimentally investigated in a closed loop integrated thermal wind tunnel test facility using wavy finned Minichannel Heat Exchanger (MICHX). The experiment was conducted by varying the ATF Reynolds number from 3 to 30. The flow friction factors in minichannel were evaluated. For a fully developed laminar flow the friction factors were evaluated considering fluid viscosity effects due to temperature variation. The flow correlated with a Poiseuille equation while friction factors were analyzed considering constant property ratio. However, it showed different correlation when considered variable property ratio.
Journal Article

Study of Motor Oil Cooling at Low Reynolds Number in Multi-Port Narrow Channels

2013-04-08
2013-01-1643
Mini and micro-scale channels have drawn researchers' attention in the past three decades. The use of these tiny channels in a heat exchanger is considered as one of the pioneered works on the narrow channels as minichannels provide high heat transfer rates per unit volume. Motor oil, known as engine oil, is one of the vital fluids in automotive applications. Its cooling process is confronted by its thermo-physical properties, especially viscosity, which makes this process difficult. In current investigations, experimental endeavors have been performed using a closed loop thermal wind tunnel to verify the aptness of cooling the motor oil through a cross-flow minichannel heat exchanger. The prototype heat exchanger consists of 3 circuits; each circuit has five slabs which are connected to each other by four serpentines. There are 68 channels of 1 mm circular diameter drilled through each slab. The minichannel heat exchanger comprises of wavy fins arranged parallel to the flow of air.
X