Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermophoretic Transport of Submicron Particles in Pulsating Surface Sublayers

2012-09-24
2012-01-1950
EGR coolers are widely used in reciprocating engines to reduce NOx emission. Thermophoresis-an important transport mechanism for submicron particles such as soot-drives gas-suspended particles from hot regions towards cool surfaces and is responsible for soot deposition and build-up in EGR coolers and related devices. Although much is known about thermophoresis in steady flow, little is known about soot deposition in flows with oscillatory heat and mass transfer. In this paper we present new results for the model problem of thermophoretic particle transport in a thin pulsatile shear layer above a flat, cold wall. The transport equations for this sublayer flow with oscillating shear have been solved numerically and, in the case of steady flow, are in excellent agreement with the exact solution for the steady wall shear.
Technical Paper

Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces

2011-09-13
2011-01-2183
EGR coolers are used in combustion engines to reduce NOx emissions. However, heat transfer in these coolers also results in thermophoresis-temperature-gradient driven motion of suspended particles towards cooler regions-which leads to significant soot deposition. A simple one-dimensional model is proposed to predict the deposition velocity and soot layer thickness that compares reasonably well with experimental data. The behavior of soot deposits on cooled surfaces is complex, with the thickness of the soot layer stabilizes after around 100 hours, reaching a uniform, thickness over the entire heat-exchanger surface. An analysis of this trend and a tentative mechanism to explain this type of behavior is given, based on experimental observations.
X