Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Virtual Integration and Testing of Multifunctional Fuel Cell Systems in Commercial Aircraft

2013-09-17
2013-01-2281
This paper focuses on the virtual integration and test approach used for the evaluation of an automation system developed for the multifunctional operation of fuel cells in commercial aircraft. In order to accomplish the virtual integration a model of the overall automation system is linked with a dynamic model of the complete fuel cell system. For this purpose a modeling approach for complex physical systems is described in this paper. During virtual testing various simulation runs are executed based on automatically generated test cases, which cover a complete flight mission. For this reason a flight mission is modeled as a Statechart that includes next to time- based flight phases also potential events and malfunctions (e.g. engine flame-out, cargo fire). An algorithm is described, which can find all possible state combinations including parallel event sequences.
Journal Article

A Methodology for Rapid Evaluation and Sizing of Fuel Cell System Architectures for Commercial Aircraft

2011-10-18
2011-01-2646
This paper presents a methodology to develop, optimize and evaluate fuel cell system architectures. The main focus is placed on the sizing and optimization process which uses the simulation tool Matlab/Simscape. A model library is introduced which contains parametric behavior models. The benefit of this is that the size of the components is not fixed by the parameters. The size of the components is driven by the energy and mass flows of each component. Thus the implicit sizing and optimization process is easy to handle and numerically robust. Illustrative results are shown for a fuel cell system.
Technical Paper

Design and Verification Approach for a Complex State-Based Fuel Cell Control System

2011-10-18
2011-01-2505
This paper presents a model-based design and verification approach, which is used to develop a complex state-based fuel cell control system. The architecture of the control system is organized in a hierarchical manner with one supervisory controller and several system controllers. The used development approach considers the systematic design of this hierarchical concept and enables the integration of requirements. The single modules of the control system are modeled as Statecharts. During the design process a method based on Petri Nets is used to analyze and verify the state-based structure of the supervisory controller. The verification of the control system functionalities is finally realized by a black box test approach. The required test sequences are systematically specified on the basis of the state transition graph of the supervisory controller.
X