Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Characteristics of Non-Stationary Sources of Wind Noise Measured with a Surface Pressure Array

2017-06-05
2017-01-1785
Measurements of interior wind noise sound pressure level have shown that dBA and Loudness are not adequate metrics of wind noise sound quality due to non-stationary characteristics such as temporal modulation and impulse. A surface microphone array with high spatio-temporal resolution has been used to measure and analyze the corresponding non-stationary characteristics of the exterior aero-acoustic loading. Wavenumber filtering is used to observe the unsteady character of the low wavenumber aero-acoustic loading components most likely to be exciting glass vibration and transmitting sound.
Journal Article

Sideglass Turbulence and Wind Noise Sources Measured with a High Resolution Surface Pressure Array

2015-06-15
2015-01-2325
The authors report on the design and application of a high resolution micro-electro-mechanical (MEMS) microphone array for automotive wind noise engineering. The array integrates both sensors and random access memory (RAM) chips on a flexible circuit board that eliminates high channel count wiring and allows the array to be deployed on automobile surfaces in a convenient “stick-on/peel-off” configuration. These arrays have potential application to the quantitative evaluation of interior wind noise from measurements on a clay model in the wind tunnel, when used in conjunction with a body vibro-acoustic model. The array also provides a high resolution turbulence measurement tool, suitable for validation of computation fluid dynamics (CFD) simulations for wind noise. The authors' report on the wavenumber-frequency structure of flow turbulence measured in different flow regions on a side glass and the corresponding contributions to interior wind noise.
Technical Paper

CFD-Based Wave-Number Analysis of Side-View Mirror Aeroacoustics towards Aero-Vibroacoustic Interior Noise Transmission

2013-04-08
2013-01-0640
It has been shown that internal transmission of wind noise is dependent on the external aerodynamic and acoustic excitation around the automobile. Flow over the A-pillar and side-view mirror induces strongly convecting turbulence and associated acoustics which excite the side-glass. A useful tool to understand and quantify these physics is to perform temporal Fourier analysis (auto-spectra) and spatial Fourier analysis (cross-spectra and wave-number decomposition). This study demonstrates the uses of wave-number decomposition to quantify the mechanisms associated with turbulent convection and acoustical propagation. A CFD computation using the commercial codes STAR-CCM+ is performed for the flow over a generalized side-view mirror in a freestream of 38m/s. LES-enabled turbulence is solved in a fully compressible framework so as to capture all the local acoustical propagation well beyond 3kHz.
X