Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Calibration Procedure for Measurement-Based Fast Running Model for Hardware-in-the-Loop Powertrain Systems

2020-04-14
2020-01-0254
The requirements set for the next-generation powertrain systems (e.g. performance and emissions) are becoming increasingly stringent with ever-shortening time-to-markets at reduced costs. To remain competitive automotive companies are progressively relying on model-driven development and virtual testing. Virtual test benches, such as HiL (Hardware-in the-Loop) simulators, are powerful tools to reduce the amount of physical testing and speed up engine software calibration process. The introduction of these technologies places new, often conflicting demands (such as higher predictability, faster simulation speed, and reduced calibration effort) upon simulation models used at HiL test benches. The new models are also expected to offer compliance to industry standards, performance and usability to further increase the usage of virtual tests in powertrain development.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Exhaust System of a Naturally Aspirated Engine

2017-06-05
2017-01-1793
As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of exhaust system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of the GT-power engine and exhaust model and to update internal best practices for modeling. This paper will explore the details of an exhaust focused correlation project that was performed on a naturally aspirated spark ignition eight-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem.
Technical Paper

Experimental GT-POWER Correlation Techniques and Best Practices Low Frequency Acoustic Modeling of the Intake System of a Turbocharged Engine

2017-06-05
2017-01-1794
As regulations become increasingly stringent and customer expectations of vehicle refinement increase, the accurate control and prediction of induction system airborne acoustics are a critical factor in creating a vehicle that wins in the marketplace. The goal of this project was to improve the predicative accuracy of a 1-D GT-power engine and induction model and to update internal best practices for modeling. The paper will explore the details of an induction focused correlation project that was performed on a spark ignition turbocharged inline four-cylinder engine. This paper and SAE paper “Experimental GT-POWER Correlation Techniques and Best Practices” share similar abstracts and introductions; however, they were split for readability and to keep the focus on a single a single subsystem. This paper compares 1D GT-Power engine air induction system (AIS) sound predictions with chassis dyno experimental measurements during a fixed gear, full-load speed sweep.
X