Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Computational Aero-Acoustics Simulation of Automotive Radiator Fan Noise

2015-04-14
2015-01-1657
Flow bench and engine testing can be used to detect flow induced noise, but understanding the fundamental mechanisms of such noise generation is necessary for developing an effective design. This paper describes Computational Aero-Acoustic (CAA) analyses performed to obtain the broad-band and BPF noise sources A computational aero-acoustics simulation on the aerodynamic noise generation of an automotive radiator fan assembly is carried out. Three-dimensional Computational Fluid Dynamics (CFD) simulation of the unsteady flow field was performed including the entire impeller and shroud to obtain the source of an audible broad-band flow noise between 2 to 4 kHz. Static pressure probes placed around the outer-periphery and at the center of the impeller inlet side and, at the shroud cavities to capture the noise sources. The static pressure at all probe locations were FFT (Fast Fourier Transform) processed and sound pressure level (SPL) was calculated.
Technical Paper

Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces

2011-09-13
2011-01-2183
EGR coolers are used in combustion engines to reduce NOx emissions. However, heat transfer in these coolers also results in thermophoresis-temperature-gradient driven motion of suspended particles towards cooler regions-which leads to significant soot deposition. A simple one-dimensional model is proposed to predict the deposition velocity and soot layer thickness that compares reasonably well with experimental data. The behavior of soot deposits on cooled surfaces is complex, with the thickness of the soot layer stabilizes after around 100 hours, reaching a uniform, thickness over the entire heat-exchanger surface. An analysis of this trend and a tentative mechanism to explain this type of behavior is given, based on experimental observations.
Technical Paper

Optimizing the Geometry of Degas Bottle Using CAE/CFD

2017-03-28
2017-01-1321
Degas bottles have been extensively used in vehicles in order to act as an air pillow on top of the cooling loop and provide space for expansion. One of the important characteristics of the bottle which defines if it will work in a certain loop is the so called “capacity” of the bottle which defines the flowrate that degas bottle would be able to pass through without any foaming. Considering the complex geometry of degas bottle and the foaming phenomena, predicting the behavior of coolant in the bottle passages is challenging which requires costly tests. Computational Fluid Dynamics (CFD) has been extensively used in simulating multi-phase flows in automotive components. In the current project, CFD has been used to simulate the behavior of flow in bottle chambers and to provide guidelines for the design team in order to increase the bottle performance/capacity. The CFD guidelines were in agreement with test results and lead to improving the degas bottle capacity.
Technical Paper

Optimizing the Geometry of Fan-Shroud Assembly Using CFD

2015-04-14
2015-01-1336
Underhood thermal management is a challenging problem in automotive industry. In order to make sure that vehicle works efficiently, there should be enough airflow through the cooling system so that the consequent heat rejection would be adequate. In idle condition the required air flow is provided by the cooling fan so a better understanding and an accurate predictive CAE tool for fan is very beneficial. Computational Fluid Dynamics (CFD) has been extensively used in predicting aerodynamic performance of automotive components. In the current work, the airflow performance of a fan, shroud and radiator assembly was simulated using Moving Reference Method (MRF) method. Although it is less expensive than Sliding Mesh (SM) method, the CAE results compare well with the test data. The simulation was carried out over 10+ different shrouds and the effect of geometrical parameters on airflow was investigated.
Technical Paper

Studying the Efficiency of Different CAE/CFD Methods for Modeling Complex Air-to-Air Heat Exchangers

2016-04-05
2016-01-0179
In this article, the behavior of a typical air-to-air heat exchanger (intercooler) during the thermal shock test has been recorded during which the heat exchanger is exposed to very high temperature gradients. Different CAE models have been built that have different levels of details and the sensitivity of the results to the details has been studied. Finally a comparison have been made between the results of the CAE/CFD model and the experimental data and the correlation study shows that in spite of being simple, the dual stream is very accurate and correlates pretty well with test data. Including all design details in the CAE model will not necessarily improve the accuracy of the model while adding up to the computational cost.
Technical Paper

Thermophoretic Transport of Submicron Particles in Pulsating Surface Sublayers

2012-09-24
2012-01-1950
EGR coolers are widely used in reciprocating engines to reduce NOx emission. Thermophoresis-an important transport mechanism for submicron particles such as soot-drives gas-suspended particles from hot regions towards cool surfaces and is responsible for soot deposition and build-up in EGR coolers and related devices. Although much is known about thermophoresis in steady flow, little is known about soot deposition in flows with oscillatory heat and mass transfer. In this paper we present new results for the model problem of thermophoretic particle transport in a thin pulsatile shear layer above a flat, cold wall. The transport equations for this sublayer flow with oscillating shear have been solved numerically and, in the case of steady flow, are in excellent agreement with the exact solution for the steady wall shear.
X