Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

A Study on Development of Brake System Using 1-D Simulation

2023-11-05
2023-01-1879
The development trend of new vehicles is to shorten the development period, diversify the models, and produce small amounts compared to the past. The current development process of braking systems is difficult to meet recent development trends, and it is more difficult to shorten the development period in the verification process that requires actual products. In this paper, we developed a 1-D Simulation of AMESim, MATLAB/Simulink Co-Simulation model of Hyundai Mobis iMEB(Integrated Mobis Electronic Brake) system for eco-friendly vehicles. If hydraulic braking is applied more than the tire grip force during braking, tire slip occurs, and if the rear wheel is locked before the front wheel, stability is lost, so it is advantageous to decide design parameter of brake system to make the front wheel first locked in consideration of design parameters of each vehicle.
Technical Paper

Development of Smart Booster Brake Systems for Regenerative Brake Cooperative Control

2011-09-18
2011-01-2356
In regenerative braking, the kinetic energy of the vehicle is stored in a battery as the electric energy that is otherwise being dissipated as heat by friction, so that the stored energy is recuperated to drive the vehicle. In general, another independent braking mechanism, such as hydraulic brakes, needs to be used in cooperation with regenerative braking in order to meet the total braking force demand. The smart booster system, which uses a permanent magnet synchronous motor to replace the conventional vacuum booster, is proposed in this paper as an active braking system which is well suited for such regenerative cooperative braking applications in environment friendly vehicles. A pressure feedback control is used with a nested current control loop using pressure and current sensors, respectively.
X