Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Cylinder Cooling for Improved Durability on an Opposed-Piston Engine

2012-04-16
2012-01-1215
The cooling system design for a two-stroke, opposed-piston (OP) engine is substantially different from that of a conventional four-stroke engine as the opposed-piston engine requires efficient cooling at the center of the cylinder where the heat load is highly concentrated. A thermally efficient design ensures engine durability by preserving the oil film at the top ring reversal zone. This is achieved by limiting the surface temperature of the liner to below 270°C at this location. Various water jacket designs have been analyzed with computational fluid dynamics (CFD) using a "discretized" Nusselt number approach for the gas side heat flux prediction. With this method, heat transfer coefficients are computed locally given the flow field of the combustion gases near the liner surface and then multiplied by the local gas/liner temperature difference to generate the heat flux distribution into the cylinder liner.
Journal Article

The Achates Power Opposed-Piston Two-Stroke Engine: Performance and Emissions Results in a Medium-Duty Application

2011-09-13
2011-01-2221
Historically, the opposed-piston two-stroke diesel engine set combined records for fuel efficiency and power density that have yet to be met by any other engine type. In the latter half of the twentieth century, the advent of modern emissions regulations stopped the wide-spread development of two-stroke engine for on-highway use. At Achates Power, modern analytical tools, materials, and engineering methods have been applied to the development process of an opposed-piston two-stroke engine, resulting in an engine design that has demonstrated a 15.5% fuel consumption improvement compared to a state-of-the-art 2010 medium-duty diesel engine at similar engine-out emissions levels. Furthermore, oil consumption has been measured to be less than 0.1% of fuel over the majority of the operating range. Additional benefits of the opposed-piston two-stroke diesel engine over a conventional four-stroke design are a reduced parts count and lower cost.
Technical Paper

Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines

2011-09-13
2011-01-2216
A detailed thermodynamic analysis was performed to demonstrate the fundamental efficiency advantage of an opposed-piston two-stroke engine over a standard four-stroke engine. Three engine configurations were considered: a baseline six-cylinder four-stroke engine, a hypothetical three-cylinder opposed-piston four-stroke engine, and a three-cylinder opposed-piston two-stroke engine. The bore and stroke per piston were held constant for all engine configurations to minimize any potential differences in friction. The closed-cycle performance of the engine configurations were compared using a custom analysis tool that allowed the sources of thermal efficiency differences to be identified and quantified.
X