Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

AI-Based Optimization Method of Motor Design Parameters for Enhanced NVH Performance in Electric Vehicles

2024-06-12
2024-01-2927
The high-frequency whining noise produced by motors in modern electric vehicles causes a significant issue, leading to annoyance among passengers. This noise becomes even more noticeable due to the quiet nature of electric vehicles, which lack other noises to mask the high-frequency whining noise. To improve the noise caused by motors, it is essential to optimize various motor design parameters. However, this task requires expert knowledge and a considerable time investment. In this study, we explored the application of artificial intelligence to optimize the NVH performance of motors during the design phase. Firstly, we selected and modeled three benchmark motor types using Motor-CAD. Machine learning models were trained using Design of Experiment methods to simulate batch runs of Motor-CAD inputs and outputs.
Technical Paper

Validation of a CFD Model of a Hollow-Cone Spray with Gasoline Fuel Blends

2011-04-12
2011-01-0379
This paper presents the summary of the development of a two-phase spray model of a hollow-cone fuel injector commonly applied to spray-guided, gasoline direct injection, (SGDI) engines. The model was simulated using the Ricardo VECTIS CFD code and takes into account the physical and chemical effects of oxygenated fuel blends (flexfuels). The characteristics of the fuel sprays at typical gasoline part-load conditions, identified in a parallel study, were of particular interest. An injection duration of 0.3 ms was chosen which represented a stratified charge, unthrottled, part-load operating condition in a spray guided GDI engine with a piezoelectric fuel injector and a fuel injection pressure of 200 bar gauge. In the first instance, the spray model was validated against data recorded in a constant volume spray chamber. Secondly, the robustness of the model was tested against data measured in an optically-accessed engine.
Technical Paper

Development of a Two-Stroke/Four-Stroke Switching Gasoline Engine - The 2/4SIGHT Concept

2005-04-11
2005-01-1137
The pursuit of flexibility is a recurring theme in engine design and development. Engines that are able to switch between the two-stroke operating cycle and four-stroke operation promise a great leap in flexibility. Such 2S-4S engines could then continuously select the optimum operating mode - including HCCI/CAI combustion - for fuel efficiency, emissions or specific output. With recent developments in valvetrain technology, advanced boosting devices, direct fuel injection and engine control, the 2S-4S engine is an increasingly real prospect. The authors have undertaken a comprehensive feasibility study for 2S-4S gasoline engines. This study has encompassed concept and detailed design, design analysis, one-dimensional gas dynamics simulation, three-dimensional computational fluid dynamics, and vehicle simulation. The resulting 2/4SIGHT concept engine is a 1.04 l in-line three-cylinder engine producing 230 Nm and 85 kW.
X