Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Journal Article

V2V-Intersection Management at Roundabouts

2013-04-08
2013-01-0722
More than 44% of all automotive crashes occur in intersections. These incidents in intersections result in more than 8,500 fatalities and approximately 1 million injuries each year in USA. It is also established that roundabouts are safer than junctions. According to a USDOT study, when compared with the junctions they replaced, roundabouts have 40% fewer vehicle collisions, 80% fewer injuries and 90% fewer serious injuries and fatalities. In earlier work, we have proposed a family of vehicular network protocols, which use Dedicated Short Range Communications (DSRC) and Wireless Access in Vehicular Environment (WAVE) technologies to coordinate a vehicle's movement through intersections. We have shown that vehicle-to-vehicle (V2V) communications can be used to avoid collisions at the intersection and also significantly decrease the trip delays introduced by traffic lights and stop signs.
Technical Paper

Intersection Management using Vehicular Networks

2012-04-16
2012-01-0292
Driving through intersections can be potentially dangerous because nearly 23 percent of the total automotive related fatalities and almost 1 million injury-causing crashes occur at or within intersections every year [1]. The impact of traffic intersections on trip delays also leads to waste of human and natural resources. Our goal is to increase the safety and throughput of traffic intersections using co-operative driving. In earlier work [2], we have proposed a family of vehicular network protocols, which use Dedicated Short Range Communications (DSRC) and Wireless Access in Vehicular Environment (WAVE) technologies to manage a vehicle's movement at intersections Specifically, we have provided a collision detection algorithm at intersections (CDAI) to avoid potential crashes at or near intersections and improve safety. We have shown that vehicle-to-vehicle (V2V) communications can be used to significantly decrease the trip delays introduced by traffic lights and stop signs.
Technical Paper

An AUTOSAR-Compliant Automotive Platform for Meeting Reliability and Timing Constraints

2011-04-12
2011-01-0448
High demands on advanced safety and driving functions, such as active safety and lane departure warnings, increase a vehicle's dependency on automotive electrical/electronic architectures. Hard real-time requirements and high reliability constraints must be satisfied for the correct functioning of these safety-critical features, which can be achieved by using the AUTOSAR (Automotive Open System Architecture) standard. The AUTOSAR standard was introduced to simplify automotive system design while offering inter-operability, scalability, extensibility, and flexibility. The current version of AUTOSAR does not assist in the replication of tasks for recovering from task failures. Instead, the standard assumes that architecture designers will introduce custom extensions to meet such reliability needs. The introduction of affordable techniques with predictable properties for meeting reliability requirements will prove to be very valuable in future versions of AUTOSAR.
Journal Article

Vehicular Networks for Collision Avoidance at Intersections

2011-04-12
2011-01-0573
A substantial fraction of automotive collisions occur at intersections. Statistics collected by the Federal Highway Administration (FHWA) show that more than 2.8 million intersection-related crashes occur in the United States each year, with such crashes constituting more than 44 percent of all reported crashes [12]. In addition, there is a desire to increase throughput at intersections by reducing the delay introduced by stop signs and traffic signals. In the future, when dealing with autonomous vehicles, some form of co-operative driving is also necessary at intersections to address safety and throughput concerns. In this paper, we investigate the use of vehicle-to-vehicle (V2V) communications to enable the navigation of traffic intersections, to mitigate collision risks, and to increase intersection throughput significantly.
Technical Paper

AUTOSAR Extensions for Predictable Task Synchronization in Multi-Core ECUs

2011-04-12
2011-01-0456
Multi-core processors are becoming increasingly prevalent, with several multi-core solutions being offered for the automotive sector. Recognizing this trend, the AUTomotive Open System ARchitecture (AUTOSAR) standard Version 4.0 has introduced support for multi-core embedded real-time operating systems. A key element of the AUTOSAR multi-core specification is the spinlock mechanism for inter-core task synchronization. In this paper, we study this spinlock mechanism from the standpoint of timing predictability. We describe the timing uncertainties introduced by standard test-and-set spinlock mechanisms, and provide a predictable priority-driven solution for inter-core task synchronization. The proposed solution is to arbitrate critical sections using the well-established Multi-processor Priority Ceiling Protocol [3], which is the multiprocessor version of the ceiling protocol for uniprocessors [1, 2] used by AUTOSAR.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
X