Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Oxidative Reactivity of Soot Particles Generated from the Combustion of Conventional Diesel, HVO and OME Collected in Particle Filter Structures

2021-09-05
2021-24-0085
The reduction of CO2 emissions in transport and power generation is currently a key challenge. One particular opportunity of CO2 reduction is the introduction of low CO2 or even CO2 neutral fuels. The combustion characteristics of such fuels are different and require engine settings modification. In addition, emissions characteristics differ significantly among different fuels. In the present study a one cylinder diesel engine was operated with conventional diesel, hydrogenated vegetable oil (HVO) and polyoxymethyl dimethyl ether (OME) as well as a series of blends. Particle filter segments were positioned in the exhaust of the engine and loaded with particles originating from the combustion of these fuels. The filter segments have been regenerated individually in a specifically designed and developed controlled temperature soot oxidation apparatus.
Technical Paper

Investigation of the Oxidation Behavior of Soot in Diesel Particle Filter structures

2015-09-06
2015-24-2516
Particulate matter in diesel exhaust is captured in diesel particulate filters (DPFs). Since increased load in the filter and thus increased pressure drop deteriorates the engine performance, the filter load of the DPF has to be removed during a process referred to as regeneration. Measures for successful regeneration aim at accelerating soot oxidation and increase fuel consumption. Regeneration lay-out and thus fuel consumption increase is strongly depending on the oxidation behavior of soot. The aim of the present study is the investigation of soot oxidation characteristics. Therefore particle filters have been loaded with soot using the exhaust gas of small heavy duty vehicle operated under defined conditions on an engine dynamometer. The particle filters have been then dismantled and fragmented on their constituting segments. Each filter segment has been regenerated individually in a specifically designed test bench.
Technical Paper

Active Regeneration Characteristics in Diesel Particulate Filters (DPFs)

2011-09-11
2011-24-0185
Particulate matter (PM) captured in diesel particulate filters (DPF) consists of: (a) soot, the product of incomplete combustion of the fuel and (b) ash, produced by combustion of lubricating oil plus minor amounts of metal components in the fuel. Among the various types of DPFs, most efficient are the so-called wall flow filters, where the exhaust gas is forced to pass through porous walls of adjacent channels, which are plugged alternately at their opposite ends. Accumulation of PM in DPFs leads to increasing pressure drop across the filter. Since increased PM load in the filter and thus increased pressure drop across the filter deteriorates the engine performance, the filter load of the DPF has to be periodically removed during a process referred to as regeneration. During the regeneration process, soot PM captured in the DPF is expected to be oxidized. The temperature needed for oxidation of PM is usually exceeding ca. 550°C.
X