Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Journal Article

Soot Oxidation in Periphery of Diesel Spray Flame via High-Speed Sampling and HR-TEM Observation

2017-09-04
2017-24-0067
In order to better understand in-flame diesel soot oxidation processes, soot particles at the oxidation-dominant periphery of diesel spray flame were sampled by a newly developed “suck” type soot sampler employing a high-speed solenoid valve and their morphology and nanostructure were observed via high-resolution transmission electron microscopy (HR-TEM). A single-shot diesel spray flame for the soot sampling experiment was achieved in a constant-volume vessel under a diesel-like condition. The sampler instantaneously sucks out a small portion of soot laden gases from the flame. A TEM grid holds inside the flow passage close to its entrance is immediately exposed to the gas flow induced by the suction at the upstream of the solenoid valve, so that the quick thermophoretic soot deposition onto the grid surface can effectively freeze morphology variation of soot particles during the sampling processes.
Technical Paper

High-Speed UV and Visible Laser Shadowgraphy of GDI In-Cylinder Pool Fire

2016-10-17
2016-01-2165
For better understanding, model development and its validation of in-cylinder soot formation processes of Gasoline Direct Injection (GDI) engines, visualization of piston surface fuel wetting, vaporization and soot formation processes of in-cylinder pool fire via high-speed UV (266nm) and visible (445nm) laser shadowgraphy was attempted in an optically accessible Rapid Compression and Expansion Machine (RCEM). A direct-injection, spark-ignition and single-shot combustion event was achieved in the RCEM under engine-equivalent, simplified and well-defined conditions operated with engine speed 600 rpm, compression ratio 9.0, equivalence ratio 0.9 and natural aspiration. The tested fuel was composed of 70% iso-octane and 30% toluene by volume and the UV absorption by toluene enabled visualization of the in-cylinder fuel distribution.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Morphology Analysis of Wall-Deposited Diesel Soot Particles via Transmission Electron Microscope

2014-10-13
2014-01-2637
Wall-deposition of soot particles occurs due to the interaction between spray flame and cylinder liner wall/piston surface, which can potentially affect soot morphology after the in-flame formation/oxidation processes and before the exit from engine cylinder. In order to investigate these effects, flame wall impingement was simulated in a constant volume combustion vessel and thermophoretic soot sampling was conducted for Transmission Electron Microscopic analysis. A TEM grid for the sampling was exposed to a single-shot diesel spray flame multiple times and the variation of soot morphology (concentration, primary particle diameter and aggregate gyration radius) among the multiple exposures was compared. Furthermore, a newly designed impingement-type sampler vertically exposed the grid to the spray flame and sampled soot particles under different boundary condition from that of conventionally used skim-type sampler.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Technical Paper

Nanostructure Analysis of Primary Soot Particles Directly Sampled in Diesel Spray Flame via HRTEM

2012-09-10
2012-01-1722
For better understanding of soot formation and oxidation processes in diesel spray flame, the nanostructure of primary soot particles directly sampled in a diesel spray flame was investigated via High-Resolution Transmission Electron Microscopy (HRTEM). A single-shot diesel spray flame was achieved in a constant volume combustion vessel under diesel-like conditions (Ta=1000K, Pa=2.7 MPa) and a micro-grid for HRTEM observation was directly exposed to the spray flame to thermophoretically sample soot particles onto the grid surface. A preliminary nanostructure investigation was conducted for x500k magnification HRTEM images of soot particles directly sampled in diesel spray flames of Fischer-Tropsch Diesel (FTD) fuel seeded with naphthalene as a representative aromatic substance. A MATLAB code for HRTEM image processing and analysis of lattice fringes within primary soot particles was developed and used to characterize the length, tortuosity and separation of lattice fringes.
Technical Paper

High-Resolution Transmission Electron Microscopy of Soot Directly Sampled at Different Axial Locations in Diesel Spray Flame

2011-09-11
2011-24-0068
For better understanding of soot formation and oxidation processes in a diesel spray flame, morphology, microstructure and size of soot particles directly sampled at different locations in the spray flame (40mm to 90mm from injector nozzle tip) were investigated using a high-resolution transmission electron microscope (HRTEM). The diesel spray flame was achieved in a constant volume combustion chamber under diesel-like conditions (2.5MPa and 940K). The concentration, diameter of primary particles and the radius of gyration of soot aggregates increased in the upstream region (40 to 50mm), exhibited a peak around the mid-stream region (60 to 70mm), and then decreased in the downstream region (80 to 90mm) from the injector nozzle tip, which corresponds to formation, peak concentration and oxidation of soot particles in the spray flame, respectively.
X