Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Development of Advanced Non-Bypass Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2019-04-02
2019-01-0153
An exhaust heat recovery (EHR) system is an effective and attractive means of improving fuel economy and in-vehicle comfort, especially of hybrid cars in winter. However, many conventional bypass systems, which have a bypass pipe and bypass valve with a thermal actuator, are still large and heavy, and it is necessary not only to effectively improve the heat recovery but also to minimize the size and weight of EHR systems. Sakuma et al. reported new-concept heat exchangers and EHR systems using a highly heat-conductive SiC honeycomb, including a non-bypass system. However, since this non-bypass system always recovers heat from the exhaust gas, its heat recovery performance was set so as not to exceed the cooling capability of the radiator at a high engine load to prevent overheating of the vehicle.
Technical Paper

Development of Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2018-04-03
2018-01-0048
Reducing the fuel consumption of powertrains in internal combustion engines is still a major objective from an environmental viewpoint. Internal combustion engines waste a huge part of the fuel energy as heat in the exhaust line. Currently, exhaust heat recovery (EHR) systems are attracting attention as an effective means of reducing fuel consumption by collecting heat from waste exhaust gas and using it for rapid warming up of the engine and cabin heating [1, 2, 3, 4]. The benefits of the EHR system are affected by a trade-off between the efficacy of the recovered useful thermal energy and the adverse effect of the additional weight (heat mass) of the system [5]. Conventional EHR systems have a complex heat exchanger structure and a structure in which a bypass pipe and heat exchanger are connected in parallel, giving them a large size and heavy weight. We have developed a new-concept silicon carbide (SiC) heat exchanger with a dense SiC honeycomb.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
X