Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Computational Simulation of an Electrically Heated Ice Protection System for Composite Leading Edges of Aircraft

2019-06-10
2019-01-2041
The performance of an electrically heated aircraft ice protection system for a composite leading edge was evaluated. The composite leading edge of the model is equipped with a Ni alloy resistance heater. A state-of-the-art icing code, FENSAP-ICE, was used for the analysis of the electrothermal de-icing system. Computational results, including detailed information of conjugate heat transfer, were validated with experimental data. The computational model was then applied to the composite leading edge wing section at various metrological conditions selected from FAR Part 25 Appendix C.
Technical Paper

Efficient Prediction of Ice Shapes in CFD Simulation of In-flight Icing Using a POD-Based Reduced Order Model

2011-06-13
2011-38-0032
In-flight icing is a persistent threat to aircraft safety and, in particular, the droplet impingement areas and intensity on the aircraft surfaces must be further investigated for anti-icing and de-icing devices. As a step toward the prediction of droplet impingement on aircraft, an Eulerian-based droplet impingement code that provides collection efficiency is developed in this paper. A computational fluid dynamics solver was also developed to solve the dry air. Then, a proper orthogonal decomposition method (a reduced order model) that optimally captures the energy content from a large multi-dimensional data set is used to predict the collection efficiency and the iced shapes on an airfoil following the mean volume diameter, liquid water content, and angles of attack. As a result, it is shown that the collection efficiency and iced shapes are in good agreement with the simulated and predicted results.
X