Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Technical Paper

Effects of Spark Discharge Energy Scheduling on Flame Kernel Formation under Quiescent and Flow Conditions

2019-04-02
2019-01-0727
The breakdown phase is considered to have the highest electric-thermal energy transfer efficiency among all the discharge modes in a conventional spark ignition process. In this study, an external capacitor is connected in parallel with the spark plug in order to enhance the discharge energy and power during the breakdown phase. A constant volume combustion chamber is used to investigate the high power spark discharge under different background pressures and with varied flow velocities. Results show that the added parallel capacitance is effective in redistributing the spark energy. With the increase in parallel capacitance, the breakdown power and energy increase, though at the cost of reduced glow phase energy. The breakdown energy also increases with the increased background pressure. Then combustion tests are carried out to study the effects of the breakdown power enhanced spark on flame propagation under both quiescent and flow conditions via optical diagnosis.
Technical Paper

A Study of Energy Enhanced Multi-Spark Discharge Ignition in a Constant-Volume Combustion Chamber

2019-04-02
2019-01-0728
Multi-spark discharge (MSD) ignition is widely used in high-speed internal combustion engines such as racing cars, motorcycles and outboard motors in attempts to achieve multiple sparks during each ignition. In contrast to transistor coil ignition (TCI) system, MSD system can be greatly shortened the charging time in a very short time. However, when the engine speed becomes higher, the ignition will be faster, electrical energy stored in the ignition system will certainly become less, especially for MSD system. Once the energy released into the spark plug gap can’t be guaranteed sufficiently, ignition will become more difficult, and it will get worse in some harsh environment such as strong turbulence or lean fuel conditions. With these circumstances, the risks of misfire and partial combustion will increase, which can deteriorate the power outputs and exhaust emissions of internal combustion engine.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Ignition Improvement for Ultra-Lean Dilute Gasoline Combustion

2017-10-08
2017-01-2244
In this work, a spatially distributed spark ignition strategy was employed to improve the ignition process of well-mixed ultra-lean dilute gasoline combustion in a high compression ratio (13.1:1) single cylinder engine at partial loads. The ignition energy was distributed in the perimeter of a 3-pole igniter. It was identified that on the basis of similar total spark energy, the 3-pole ignition mode can significantly shorten the early flame kernel development period and reduce the cyclic variation of combustion phasing, for the spark timing sweep tests at λ 1.5. The effect of ignition energy level on lean-burn operation was investigated at λ 1.6. Within a relatively low ignition energy range, i.e. below 46 mJ per pole, the increase in ignition energy via ether 1 pole or 3 pole can improve the controllability over combustion phasing and reduce the variability of lean burn combustion. Higher ignition energy was required in order to enable ultra-lean engine operation with λ above 1.6.
Technical Paper

High Energy Ignition Strategies for Diluted Mixtures via a Three-Pole Igniter

2016-10-17
2016-01-2175
A three-pole spark igniter, with the concept to broaden the ignition area, is employed in this paper to investigate the effect of spark discharge strategies on the early ignition burning process. The prototyped three-pole igniter has three independent spark gaps arranged in a triangular pattern with a circumradius of 2.3 mm. Direct-capacitor discharge techniques, utilizing close-coupled capacitors parallel to the spark gap, are applied on the three-pole igniter to enhance either the transient spark power or the overall energy. In particular, the simultaneous discharge of high energy plasma on three spark gaps can produce a surface-like ignition process which intensifies the plasma-flame interaction, thereby producing a rapid flame kernel development. The ignition strategies are evaluated in both constant volume combustion vessels and a modified single-cylinder metal engine.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Distributed Electrical Discharge to Improve the Ignition of Premixed Quiescent and Turbulent Mixtures

2016-04-05
2016-01-0706
The present work investigates the efficacy of distributed electrical discharge to increase the ignition volume by means of multipole spark discharge and radio frequency (RF) corona discharge. A range of ignition strategies are implemented to evaluate the efficacy of distributed ignition. The multipole spark igniter design has multiple high-voltage electrodes in close proximity to each other. This distributed spark ignition concept has the ability to generate multiple flame kernels either simultaneously or in a staggered mode. A novel elastic breakdown ignition strategy in responsive distribution (eBIRD) high frequency discharge is also implemented via the multipole igniter. The RF corona discharge is generated through an in-house developed ignition system. A form of distributed ignition is initiated along the streamer filaments.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

2015-09-01
2015-01-1889
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Technical Paper

Spark Ignition Circuit Energy Characterization based on a Simplified Model and Measurement Analysis

2015-04-14
2015-01-1271
The spark ignition circuit inside an internal combustion engine system is the source which provides the initiation energy required for triggering combustion in a spark ignition (SI) engine in-cylinder air/fuel mixture. Proper spark phasing and adequate spark energy release in spark ignited combustion would yield significant combustion efficiency improvement and affect the in-cylinder production species composition. In this work a simplified spark ignition circuit model constructed based on circuit theorems is proposed. Measurements on how ignition pressure, secondary circuit series resistance and dwell duration would affect the ignition energy migration are presented. Simulations using the proposed model have also demonstrated similar energy migration trends to measurement results which show the influences caused by different secondary series resistance and dwell durations.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
X