Refine Your Search

Search Results

Technical Paper

Rotating Testing of a Low-Power, Non-Thermal Ultrasonic De-icing System for Helicopter Rotor Blades

2011-06-13
2011-38-0098
Ultrasonic excitation has proven to provide ice interface transverse shear stresses exceeding the adhesion strength of freezer and wind tunnel ice to various metals, promoting instantaneous ice delamination. Prior proof-of-concept testing presented issues related to piezoelectric actuator cracking under ultrasonic tensile excitation, as well as actuator debonding from the host structure. The aim of this research is to provide solutions to the actuator reliability issues encountered during prior research and to perform rotor icing testing to validate the proposed solutions. Three different approaches are taken to solve the issues related with actuator failure during de-icing processes: custom-designed controllers to ensure the excitation of desired ultrasonic resonance modes, compression only driving of the actuator, and optimization of actuator thickness.
X