Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Combustion and Autoignition Modelling in a Turbocharged SI Engine

2016-10-17
2016-01-2234
A holistic modelling approach has been employed to predict combustion, cyclic variability and knock propensity of a turbocharged downsized SI engine fuelled with gasoline. A quasi-dimensional, thermodynamic combustion modelling approach has been coupled with chemical kinetics modelling of autoignition using reduced mechanisms for realistic gasoline surrogates. The quasi-dimensional approach allows a fast and appreciably accurate prediction of the effects of operating conditions on the burn-rate and makes it possible to evaluate engine performance. It has also provided an insight into the nature of the turbulent flame as the boost pressure and speed is varied. In order to assess the sensitivity of the end-gas chemical kinetics to cyclic variability, the in-cylinder turbulence and charge composition were perturbed according to a Gaussian distribution.
Journal Article

Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels

2014-10-13
2014-01-2745
One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit.
Technical Paper

Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery

2014-10-13
2014-01-2843
Particulate emissions are of growing concern due to health impacts. Many urban areas around the world currently have particulate matter levels exceeding the World Health Organisation safe limits. Gasoline engines, especially when equipped with direct injection systems, contribute to this pollution. In recognition of this fact European limits on particulate mass and number are being introduced. A number of ways to meet these new stringent limits have been under investigation. The focus of this paper is on particulate emissions reduction through improvements in fuel delivery. This investigation is part of the author's ongoing particulate research and development that includes optical engine spray and combustion visualisation, CFD method development, engine and vehicle testing with the aim to move particulate emission development upstream in the development process.
Journal Article

The Performance of a Modern Vehicle on a Variety of Alcohol-Gasoline Fuel Blends

2012-04-16
2012-01-1272
An unmodified, conventionally fuelled, 2009 Class D vehicle with a 2.0L turbocharged gasoline direct injection engine was operated on a range of gasoline, gasoline-ethanol and gasoline-butanol fuel blends over NEDC drive cycles and WOT power curves on a chassis dynamometer. Engine performance, engine management system parameters and vehicle out emissions were recorded to investigate the response of a current state-of-the-art technology vehicle to various alcohol fuel blends. The vehicle fired on all fuels and was capable of adapting its long term fuelling trim to cope with the increased fuel flow demand for alcohol fuels up to E85. Over the NEDC tests, the volumetric fuel consumption was very strongly related to the calorific content of the fuel. CO and NOx emissions were largely unaffected for the mid alcohol blends, but CO emissions decreased and NOx emissions increased significantly for the high alcohol fuels. THC emissions were largely unaffected.
Technical Paper

Evaluating Synergies between Fuels and Near Term Powertrain Technologies through Vehicle Drive Cycle and Performance Simulation

2012-04-16
2012-01-0357
The main focus nowadays for the development of future vehicle powertrain systems is the improvement in fuel efficiency alongside the reduction of pollutant emissions and greenhouse gasses, most notably carbon dioxide. The automotive community is already engaged in seeking solutions to these issues, however, the ideal solution, namely zero emission vehicle is still regarded as being a long way from fruition for the mass market. In the meantime steps are being taken, in terms of engineering development, towards improved fuel efficiency and sustainability of relatively conventionally powered vehicles. One approach to the decarbonization of road vehicles is to supplement existing fossil fuels with sustainable biofuels.
Technical Paper

The Development of a Dedicated Range Extender Engine

2012-04-16
2012-01-1002
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range-extender engine designed for use in a compact-class vehicle. The first paper in this series used real-world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range-extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Technical Paper

Characterisation of Flow Structures in a Direct-Injection Spark-Ignition Engine Using PIV, LDV and CFD

2011-04-12
2011-01-1290
In-cylinder air flow structures are known to play a major role in mixture preparation and engine operating limits for DISI engines. In this paper PIV was undertaken on in-cylinder flow fields for three different planes of measurement in the intake and compression strokes of a DISI engine for a low-load engine operating condition at 1500 RPM, 0.5 bar inlet plenum pressure (World Wide Mapping Point). One of these planes was vertical, cutting through the centrally located spark plug (tumble plane); the other two planes were horizontal, one close to TDC (10 mm below fire face) and the other one close to mid stroke (50 mm below fire face). Statistical analysis was undertaken on the numbers of cycles needed to determine ensemble average flow-field and turbulent kinetic energy maps with up to 1200 cycles considered. The effect of engine head temperature was also examined by obtaining flow fields using PIV with the engine head coolant held at 20 °C and 80 °C.
Journal Article

Development of a Turbocharged Direct Injection Downsizing Demonstrator Engine

2009-04-20
2009-01-1503
This paper describes the initial development of a 3 cylinder 1.2l technology demonstrator engine from MAHLE. The purpose of this highly turbocharged direct injection engine is to demonstrate production-ready technologies that enable low CO2 emissions via downsizing by 50%. Downsizing is one of the most proven paths to CO2 emission reduction. By using careful design, a 2.4 l engine can be replaced by a 1.2l engine that has superior torque at all speeds and on-road fuel consumption benefits of 25 - 30%. A two-stage turbocharging system has been developed for the engine to enable good transient response and the high torque levels at all engine speeds demanded by a downsizing approach. Several options were tested and the final system exceeds the 30bar peak BMEP target with stoichiometric fuelling. Indeed, lambda = 1.0 fuelling is maintained over the majority of the full-load line and the 144kW peak power requirement is fulfilled at only 6000 rpm.
X