Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Interaction of Gear-Shaft Dynamics Considering Gyroscopic Effect of Compliant Driveline System

2015-06-15
2015-01-2182
Due to the design of lightweight, high speed driveline system, the coupled bending and torsional vibration and rotordynamics must be considered to predict vibratory responses more realistically. In the current analysis, a lumped parameter model of the propeller shaft is developed with Timoshenko beam elements, which includes the effect of rotary inertia and shear deformation. The propeller shaft model is then coupled with a hypoid gear pair representation using the component mode synthesis approach. In the proposed formulation, the gyroscopic effect of both the gear and propeller shaft is considered. The simulation results show that the interaction between gear gyroscopic effect and propeller shaft bending flexibility has considerable influence on the gear dynamic mesh responses around bending resonances, whereas the torsional modes still dominate in the overall frequency spectrum.
Journal Article

Multi-Point Mesh Modeling and Nonlinear Multi-Body Dynamics of Hypoid Geared System

2013-05-13
2013-01-1895
A multi-point hypoid gear mesh model based on 3-dimensional loaded tooth contact analysis is incorporated into a coupled multi-body dynamic and vibration hypoid gear model to predict more detailed dynamic behavior of each tooth pair. To validate the accuracy of the proposed model, the time-averaged mesh parameters are applied to linear time-invariant (LTI) analysis and the dynamic responses, such as dynamic mesh force, dynamic transmission error, are computed, which demonstrates good agreement with that predicted by single-point mesh model. Furthermore, a nonlinear time-varying (NLTV) dynamic analysis is performed considering the effect of backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, transmission error, mesh point and line-of-action. Simulation results show that the time history of the mesh parameters and dynamic mesh force for each pair of teeth within a full engagement cycle can be simulated.
Journal Article

Dynamics of Coupled Nonlinear Hypoid Gear Mesh and Time-varying Bearing Stiffness Systems

2011-05-17
2011-01-1548
A new capability to analyze the dynamic interaction of nonlinear hypoid gear mesh characteristics and time-varying bearing stiffness is proposed. Both backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, mesh point and line-of-action, are included in the nonlinear hypoid gear mesh model. The time-varying bearing stiffness behavior due to the changing orbital position of rolling elements is also modeled. A practical application is studied to reveal the dynamic characteristics of the complex interactions. Dynamic simulation results show that dynamic mesh force is relatively insensitive to the temporal variation in the bearing stiffness. On the other hand, the dynamic bearing loads are affected significantly by the time-varying bearing stiffness, especially in the case of heavy drive torque load without the occurrence of jump response phenomenon.
X